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ABSTRACT 

Quantitative computed tomography (QCT) of the lungs plays an increasing role in 

identifying sub-phenotypes of pathologies previously lumped into broad categories such as 

COPD and Asthma. Image matching of CT lung images have proven useful in linking 

structural and functional variables as well as identifying regional alterations over time. 

With increasing CT data sets acquired by multi-center trials for big data analytics, it is 

essential to adopt an efficient image registration method that could extract optimal 

functional variables independent of registration directions. Thus, the first objective of the 

research is to develop a symmetric multi-level non-rigid registration that employs an 

inverse consistent (IC) transformation whereby images are registered both in the forward 

and reverse directions. The symmetric method is based on a novel generic mathematical 

framework to include forward and backward transformations, simultaneously to eliminate 

the need to compute the inverse transformation. A multi-core CPU and Graphics 

Processing Units (GPU) implementation with the sum of squared tissue volume difference 

(SSTVD) for three-dimensional (3-D) human lung datasets were tested. Success was 

evaluated in terms of the IC transformation serving to link total lung capacity (TLC) to 

functional residual capacity (FRC). Comparison of displacement fields showed that the 

symmetric method gave a symmetrical grid shape and reduced IC errors. Also the GPU 

version demonstrated an average of 43 times speedup and 5.2 times speedup over the 

single-thread and twelve-threaded CPU versions, respectively. The second objective of the 

research is to identify clinically meaningful homogenous groups (clusters) within former 

and current COPD subjects using a comprehensive set of imaging-based variables derived 

from image registration and CT scans. We augmented a multiscale imaging-based cluster 
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analysis (MICA), which was originally developed for clustering asthmatic populations, by 

introducing COPD-specific imaging-based metrics to identify the clusters. To improve 

cluster stability, we analyzed current and former smokers separately. We acquired 

computed tomography images at TLC and residual volume (RV) of the current smokers (N 

= 284) and former smokers (N = 406) from Subpopulations and Intermediate Outcomes in 

COPD Study (SPIROMICS). Functional variables were derived from registration of TLC 

and RV images, including functional small airways disease (fSAD%) and regional volume 

change. Structural variables assessed at TLC images comprises emphysema, tissue 

fraction, airway wall thickness and airway diameter. With these variables, we employed a 

machine learning method (an unsupervised clustering technique (K-means)) to identify 

imaging-based clusters. Four clusters were identified for both current and former smokers. 

Then we performed association tests of clusters with clinical biomarker measures led to 

meaningful associations. Further we analyzed airway branch variant among former and 

current smokers. A data-driven clustering method combined with meaningful associations 

with existing clinical metrics used for diagnosis of COPD. The results suggest the 

sensitivity of MICA in differentiating subpopulations and further lend themselves to 

biomarkers characterization that might ultimately lead to the development of targeted 

therapeutic interventions. 
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PUBLIC ABSTRACT 

There is notable heterogeneity in clinical presentation of patients with chronic 

obstructive pulmonary disease (COPD). Classification of COPD is usually based on the 

severity of airflow limitation (pre- and post- bronchodilator FEV1), which may not 

sensitively differentiate subpopulations with distinct phenotypes. A recent advance of 

quantitative medical imaging and data analysis techniques allows for deriving quantitative 

computed tomography (QCT) imaging-based metrics. These imaging-based metrics can be 

used to link structural and functional alterations at multiscale levels of human lung. We 

acquired QCT images of 800 former and current smokers from Subpopulations and 

Intermediate Outcomes in COPD Study (SPIROMICS). A GPU-based symmetric non-

rigid image registration method was applied at expiration and inspiration to derived QCT-

based imaging metrics at multiscale levels. With these imaging-based variables, we 

employed a machine learning method (an unsupervised clustering technique (K-means)) to 

identify imaging-based clusters. Four clusters were identified for both current and former 

smokers. Four clusters were identified for both current and former smokers with 

meaningful associations with clinical and biomarker measures. Results demonstrated that 

QCT imaging-based variables in patients with COPD can derive statistically stable and 

clinically meaningful clusters. This sub-grouping can help better categorize the disease 

phenotypes, ultimately leading to a development of an efficient therapy. 
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CHAPTER 1: INTRODUCTION 

1.1 Background 

1.1.1 Subpopulations and Intermediate Outcomes in COPD Study (SPIROMICS) 

Chronic obstructive pulmonary disease (COPD) is currently the third leading 

cause of death in the United States (1). COPD is characterized by airflow limitation due 

to bronchiolitis and/or emphysema which is incompletely reversible (2), and thus it is 

identified by the ratio of forced expiratory volume in 1 s (FEV1)/forced vital capacity 

(FVC) at post bronchodilator. The severity is further distinguished by FEV1% predicted 

values by COPD guidelines (3). Recently, a multicenter study of COPD, i.e., 

Subpopulations and Intermediate Outcomes in COPD Study (SPIROMICS) (4), has been 

initiated to provide robust criteria for sub-classifying COPD participants and further to 

identify biomarkers and phenotypes for efficient treatment. 

SPIROMICS is a multi-center study designed to guide future development of 

therapies for COPD by (4):  

• Giving robust and reliable criteria for sub-classifying COPD participants into 

homogeneous sub-groups (clusters) aiming to improve the chances of successful 

outcome. 

•  Identifying biomarkers/phenotypes that can be used as intermediate outcomes to 

reliably predict clinical benefit. 

The goal of the study is to enroll 3,200 participants in four strata: severe COPD, 

mild/moderate COPD, smokers without COPD and non-smoking controls. 
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1.1.2 Quantitative Computed Tomography 

Quantitative computed tomography (QCT) of the lungs plays an increasing role in 

identifying sub-phenotypes of pathologies of disease categories such as COPD and 

Asthma. Further, QCT can be used in methods for image registration and linking multiple 

lung volumes which have proven useful in linking structure to function and in the 

identification of regional longitudinal changes. 

1.1.3 Image Registration Techniques Using Graphic Processing Units (GPU) 

Image registration is treated as an optimization problem determining a spatial 

transformation (displacement/deformation field) to match two images acquired at 

different positions and times or image data from different imaging modalities. Image 

registration can be used to determine the optimal correspondence between images in a 

common coordinate system. Image registration has been applied to both normal and 

diseased lungs with the goal of tracking the motion and regional deformation (5–7), 

linking dynamic (four dimensional) lung datasets together and differentiating emphysema 

from small airways disease in smoking-associated COPD and asthma (8).  

Registration process involves three principal components: 

• A transformation model 

• A similarity measure  

• An optimization step  

The transformation model defines how one image can be transformed or deformed in 

order to match another image. The similarity measure quantifies the degree of matching 

between two images within a common coordinate system. Because of non-uniform 
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deformation of the lung, non-rigid image registration methods is suitable to capture 

accurate motion of each local point within the lung. Image registration can provide 

regional functional parameters such as regional ventilation, regional deformation, and 

deformation of the airway tree to assess lung function and respiratory motion. In addition, 

those regional lung information can be helpful to assess altered local function of diseased 

lungs such as asthma and COPD (9).  

Graphics processing units (GPUs) can be used in a wide range of applications 

because they can significantly decrease the computational cost and time. Image 

registration, especially for 3D and 4D images, required to process a large amount of data 

very rapidly. The GPU has hundreds of cores that can process thousands of data sets in 

parallel. In the field of medical imaging, GPUs are in some cases crucial for enabling 

practical use of computationally demanding algorithms (10). 

1.1.4 Unsupervised Machine Learning  

Unsupervised machine learning technique such as cluster analysis is a collection of 

methods for defining homogenous groups of individuals based on measured 

characteristics, so that they are grouped based on their similarities, into groups (clusters) 

(11). The clusters are constructed such that the association is maximized between 

members of the same cluster and minimized between members of different clusters (12). 

Clustering approaches have been applied to derive COPD and asthma subtypes. These 

data-driven methods combined with QCT imaging can be used as powerful techniques to 

address classifying subtypes of different disease. 
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1.2 Thesis Objectives and Overview 

The main objective of this work is to develop a symmetric non-rigid image 

registration method and subsequently use it to derive imaging-based variables to sub-

classify COPD subjects (current and former smokers) using an unsupervised machine 

learning method (cluster analysis). 

Here, we seek to improve the accuracy of image matching via the use of a symmetric 

multi-level non-rigid registration employing an inverse consistent (IC) transformation 

whereby images are registered both in the forward and reverse directions. To develop the 

symmetric method, two similarity measures, the sum of squared intensity difference 

(SSD) and the sum of squared tissue volume difference (SSTVD), were used. The 

method is based on a novel generic mathematical framework to include forward and 

backward transformations, simultaneously, eliminating the need to compute the inverse 

transformation. Two implementations were used to assess the proposed method:  

• A two-dimensional (2-D) implementation using synthetic examples with SSD 

• A multi-core CPU and Graphics Processing Units (GPU) implementation with 

SSTVD for three-dimensional (3-D) human lung datasets (6 normal adults studied 

at total lung capacity (TLC) and functional residual capacity (FRC)). 

 Success was evaluated in terms of the IC transformation consistency serving to link TLC 

to FRC.  

Further, previous studies showed there is notable heterogeneity in clinical 

presentation of COPD patients. Classification of COPD is usually based on the severity 

of airflow limitation (pre- and post- bronchodilator FEV1), which may not reflect the 
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phenotypic heterogeneity nature of the disease and cannot be able to link structural and 

function alterations and symptoms. Imaging-based cluster analysis can be used to 

characterize this heterogeneity in current and former smokers of a COPD cohort and 

further to link imaging-based structural and functional variables to meaningful clinical 

outcome and biomarkers. Therefore with global and local variables derived from the 

image registration, a principal component analysis (PCA) was performed for dimensional 

reduction and obtained linearly uncorrelated components. A K-means cluster analysis 

method applied to the most important principal components, giving meaningful imaging-

based COPD clusters. 

In summary, the thesis is organized as follows  

(1) (Chapter 2) Symmetrize the cost function of image registration into forward and 

backward transformations and recast the gradient of the cost function in such a 

way that it only depends on forward transformation. Therefore the cost function 

does not explicitly require the inverse transformation of T, resulting in a simpler 

form of the gradient of the cost function. The symmetric method greatly improves 

the inverse consistency and its GPU version can be used as a powerful technique 

with significant increase in speedup factor in the image registration process.  

(2) (Chapter 3) Introduce the practical use of unsupervised machine learning 

technique (cluster analysis) to sub-classify current smoker COPD patients into 

stable clusters with distinct characteristics. 

(3) (Chapter 4) Apply the cluster analysis approach to find homogenous groups 

within former smokers and find their associations with clinical and biomarker 

measures.  
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(4) (Chapter 5) Assessment of airway branch variants among former and current 

smokers as a possible host factor beyond smoking factor as COPD is not rare 

among those who have never smoked cigarettes and many smokers do not 

develop COPD.   

(5) (Chapter 6) Future work 

• Using imaging-based variables to predict the severity or exacerbation 

histories of COPD with classification models such as decision trees and 

random forest. 

• Apply a deep learning model using convolutional neural network (CNN) 

for COPD classification leading automatic feature extraction.  
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CHAPTER 2: A GPU-BASED SYMMETRIC NON-RIGID IMAGE REGISTRATION 
METHOD IN HUMAN LUNG  

 

2.1 Introduction   

Image registration is a key process in medical image analysis used to determine the 

optimal correspondence between images in a common coordinate system when trying to 

match images collected at different times or using different imaging modalities (13). The 

correspondence provides a model to predict deformation in various human organs, such 

as the human lung. In the study of the lung, image registration has been applied to both 

normal and diseased lungs (14, 15) with the goal of tracking the motion and regional 

deformation (5–7), linking dynamic (four dimensional) lung datasets together (16) and 

differentiating emphysema from small airways disease in smoking-associated chronic 

obstructive pulmonary disease (COPD) (17). 

The result of image registration yields a transformation mapping between two 

images, being referred to as the fixed and moving images, respectively. Registration 

involves three principal components: a transformation model, a similarity measure and an 

optimization step. The transformation model defines how one image can be transformed 

or deformed in order to match another image. The similarity measure quantifies the 

degree of matching between two images within a common coordinate system. It is 

desirable that each point in the moving image has only one correspondent point as its 

counterpart in the fixed image. This assumption means the forward transformation, which 

maps the fixed image to the moving image, and the backward transformation, mapping 

the moving image to the fixed image, should be inverses of one another, a feature 

referred to as inverse consistency (IC). IC evaluates how well the transformation derived 
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from image registration satisfies inverse consistency conditions (18, 19). However, in 

usual computational usage the inverse consistency condition is not satisfied in various 

image registration techniques and registration results are transformation direction-

dependent, causing inconsistent forward and backward transformations (20).   

Several image registration methods have been proposed to address the issue of 

inverse consistency. Christensen and Johnson (21) proposed a non-parametric image 

registration method to overcome the inconsistency issue. Their method is based on jointly 

estimating the transformation in both registration directions, as well as imposing an 

inverse consistency constraint. Another approach was proposed by Ashburner et al. (22), 

who used Bayesian statistics to achieve a maximum a posteriori estimate of the 

deformation field.  Also, Cachier and Rey (23) proposed an approach to reduce the 

asymmetry of registration by introducing inversion-invariant similarity and smoothness 

energies. Another interesting method was proposed by Rogelj and Kovačič (20). They 

improved registration’s inverse consistency by defining a symmetric image 

interdependence function measuring the image similarity in both transformation 

directions. Papiez et al. (24) used a Newton-Raphson like method to symmetrize the cost 

function to satisfy the IC condition directly, while Aganj et al. (25) targeted the non-

uniformity of the cost function as the underlying cause of asymmetry by adding “an 

adaptive quasi-volume” constraint, where non-uniformity occurs when a cost function is 

divided into two parts with different weights in a symmetrization process. Also 

Vercauteren et al. (26) proposed non-parametric image registration method that imposes 

the “symmetric forces variant” as a constraint in diffeomorphic demons to achieve IC. 

Reaungamornrat et al. (27) proposed the MIND Demons algorithm for symmetric image 
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registration in spinal interventions. They used a constrained symmetric energy function to 

estimate diffeomorphisms between two images.  

Due to the ability of symmetric image registration to provide improved registration 

results in terms of inverse consistency and because medical image analysis demands high 

quality registration results, it is desirable to have the feature of symmetry in 

transformation direction. For example, symmetric methods can be used to improve image 

registration of the human lung that is complicated due to its non-rigid motion. Xu and Li 

(28) proposed a 4D image registration algorithm for dynamic volumetric lung images 

using two 4D B-spline functions, indicating a forward and inverse parameterization. 

Reaungamornrat et al. (27) used MR-To-CT symmetric image registration in spinal 

intervention using a symmetric constrain.     

  In this paper, we propose a novel mathematical framework for symmetric 

registration based on free-form deformation transformation (FFD) models (29). The aim 

of this method is to eliminate or decrease sensitivity and dependence of the image 

registration method to transformation direction without explicit need for the inverse 

transformation in such a way that final form of similarity measure does not depend on 

inverse of transformation. We implement this framework for a cubic B-spline 

transformation model with two different similarity measures, the sum of squared intensity 

difference (SSD) for two-dimensional (2-D) synthetic images and also a physiologically 

meaningful similarity measure, the sum of squared tissue volume differences (SSTVD), 

for pairs of three-dimensional (3-D) computed tomography (CT) datasets of the human 

lung. The datasets were acquired at total lung capacity (TLC) and functional residual 

capacity (FRC). In order to ensure a one-to-one mapping for large deformation, the 
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maximum displacement of control nodes was constrained (30), thus requiring solving for 

a sequence of invertible B-splines in a multi-level and multiresolution framework. The 

proposed symmetric method was assessed in two ways: 1) with 2-D synthetic examples 

using SSD in order to validate the model, and 2) with 3-D lung CT datasets using SSTVD 

because of its volume preserving nature. The time required for performing registration is 

very important in practical medical usages (31). We follow the method proposed recently 

by Ellingwood et al. (32) for faster GPU and multi-threaded CPU implementations of 

multi-level SSTVD method for 3-D cases, and a comparison of performance results is 

included in the result section.  

2.2 Methods 

Given two images �� and ��, referred to as the fixed and moving images, 

respectively, where ���	
 ∶   Ω →  ℛ, 	 ∈ Ω ⊂   ℛ� and �����
 ∶   Ω� →  ℛ, �� ∈ Ω�  ⊂
  ℛ�, these images can be considered as continuous functions of intensity at 

corresponding voxel coordinates. The aim of symmetric registration is to find a 

transformation function ��	, �
 mapping one image to another by calculating forward, 

��, and backward, ��, transformations simultaneously in order to decrease the 

dependence on registration direction. This can be accomplished by the symmetrization of 

the similarity measure so that information of both forward and backward transformations 

is included in the related cost function (20). 

2.3 Transformation Model 

We adopt cubic B-splines as the transformation model to use in conjuction with the 

symmetric measure presented in the next section. Cubic B-splines are one of the most 

common parametric transformation models for nonrigid image registration (29, 33). A 
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key property of cubic B-splines is that they are locally controlled and, thus, 

computationally efficient even for a large number of control nodes. Furthermore, the 

cubic B-spline can be very efficiently implemented on the GPU (34). 

Denote as Φ a �� × �� × �� grid of uniformly-spaced FFD control nodes, referred to 

as the control grid, overlaying a discrete and uniformly spaced grid of voxel intensity 

values, denoted as Ω, with a size of  � ×  � ×  � voxels. The displacement of the ijkth 

control node is denoted by �!,",#, and used to parameterize the transformation. The 

distances between the control nodes in the x, y, and z directions are denoted by $�, $� and 

$�, respectively. The 3-D cubic B-spline transformation � is defined for each voxel 

coordinate 	 = �&, ', (
 with respect to 4* surrounding the displacement vectors of 

control nodes � (the number of dimensions + = 3) as: 

 ��	, �
 = 	 +  . . . /0�1
/��2
/3�4
 �!50,"5�,#53
�

367

�

�67

�

067
 (1) 

 

where 8 = 9& $�⁄ ; − 1, > = ?' $�⁄ @ − 1, A = 9( $�⁄ ; − 1 are the indices of the first of the 

control nodes surrounding the voxel to be used for the FFD transformation. 1 = & $�⁄ −
�8 + 1
, 2 = ' $�⁄ − �> + 1
, 4 = ( $�⁄ − �A + 1
 denote the local physical coordinates 

of the voxel, normalized between 0 and 1. The uniform cubic B-spline basis functions /7 

through /� are defined for the & direction (and similarly for ' and () as: 

 
/7�1
 = �1 − 1
�

6 , 
/C�1
 = 31� − 61D + 4

6 , 
(2) 
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/D�1
 = −31� + 31D + 31 + 1
6 , 

/��1
 = 1�
6  

where 0 ≤ 1 ≤ 1. These basis functions are defined on limited support, allowing for 

efficient computation of the transformation function. In addition they are C2 continuous, 

allowing analytic calculation and continuity of first-order derivatives of the 

transformation function (15). In order to minimize the symmetric similarity measure 

function, we need to calculate its gradient and the Jacobian matrix of the transformation 

(the Jacobian matrix is defined as the derivative matrix of the transformation). Since the 

cubic B-spline transform is the tensor product of independent one-dimensional functions, 

the entries of the Jacobian matrix of the transformation can be analytically calculated. 

Computation of these derivatives is very similar to computing the transformation itself, 

applying the product rule from calculus and replacing as approprite basis functions B0 to 

B3 by their respective derivatives as 

 

+/7�1
 +1⁄ = �−1D + 21 − 1
 2⁄ , 
+/C�1
 +1⁄ = �31D − 41
 2⁄ , 

+/D�1
 +1⁄ = �−31D + 21 + 1
 2⁄ , 
+/��1
 +1⁄ = 1D 2⁄  

(3) 

 

 

2.4 Symmetrization of Similarity Measure 

2.4.1 Sum of Squared Intensity Difference 

Given a pair of N-dimensional images �� and ��, a commonly used similarity 

measure, the sum of squared intensity difference (SSD), is defined as 
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 HIIJ��
 = .K���	
 − ����L	, �M
N
�∈O

D
 (4) 

where 	 =  �&C … &Q
 and � = �L	, �M is the corresponding transformed point from the 

fixed to the moving image. A symmetric version of the SSD similarity measure R��
, 

can be defined as 

 R��
 = 1
2 .K���	
 − ����L	, �M
ND

	∈O
+ 1

2 . K���S′
 − ����UVL�′, �M
ND
�W∈OW

 (5) 

Where Ω and Ω� are the domains in images �� and ��, respectively. In order to ensure 

symmetry of the similarity measure, we force the backward transformation as the exact 

inverse of the forward transformation. To calculate Eq. (5), we choose the sample point 

S′ as the forward transformed point of  , i.e., �� = � = �L	, �M and 	 =  �UVL�′, �M. 
Thus, we could rewrite Eq. (5) as  

 R��
 = 1
2 .K���	
 − ����L	, �M
ND

	∈O
+ 1

2 .K���S
 − ����UVL�, �M
ND
�∈O

 (6) 

Where both 	 and S are elements in the same set of Ω. For optimization, we need to 

calculate the gradient of the cost function, Eq. (6), with respect to the transformation 

parameter � as 

 

XR
X� =  − .K���	
 − ����L	, �M
N Y∇����
. X��L	, �M


X�	∈O

− ∇���	
. X��UVL�, �M

X� \ 

(7) 

where ∇����
 (or ∇���	
) is the intensity gradient of the moving (or fixed) images. It is 

straightforward to calculate X� X�⁄  with the defined forward transformation. X�UV X�⁄  
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is derived by use of the chain rule for partial derivatives and noting that the fixed image 

coordinates 	 are independent of the displacement vectors of control nodes �, and that � 

is identified with the forward transformed point of 	, � = �L	, �M:  

 
0 = +	

+� = X�UV
X�

X�
X� + X�UV

X� = L]^_`M X�L	, �M
X� + X�UV

X�  

 

(8) 

where L]^_`M is the Jacobian matrix of the transformation �UV. The Jacobian value ]^  is 

defined as the determinant of the derivative matrix of the transformation respect to voxel 

coordinate 	 (15). The Jacobian matrix of the inverse transformation is the inverse of the 

Jacobian matrix of the transformation. Using the inverse function theorem, we can recast 

Eq. (7) in terms of the forward transformation by making use of the substitution from Eq. 

(8) as 

 
X�UV
X� = −L]^MUC X�

X� (9) 

So Eq. (7) can be rewritten as  

 
XR
X� =  − .K���	
 − ����
Na∇����
 +  ∇���	
  ∙  L]^MUCc ∙ 

	∈O
X�
X� (10) 

Eq. (10) does not explicitly require the inverse transformation of T. The framework 

presented above is a generic form for intensity-based symmetric registration and can be 

applied to both non-parametric and parametric transformation models with complicated 

similarity measures, such as mutual information, normalized correlation coefficient and 

the sum of squared local tissue volume difference (SSTVD). 
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2.4.2 Sum of Squared Tissue Volume Difference 

The similarity measure SSTVD, proposed by Yin et al. (15), has been 

demonstrated to successfully improve registration of lung images, particularly in regions 

with large deformations. It takes into account changes in the reconstructed Hounsfield 

unit (scaled attenuation coefficient, HU) due to inflation in lung motion. The Hounsfield 

units can be used to estimate the amount of air or tissue in each voxel (35). SSTVD 

extends the SSD similarity measure to address intensity changes in respiratory motion 

between intra-subject volumetric lung CT images by including air and tissue volume 

information. This measure is defined as 

 HII^dJ��
 = .K2��	
�e��	
 − 2���L	, �M
�e���L	, �M
N
�∈O

D
 (11) 

where 2� and 2� are the local volumes of corresponding regions in the fixed and moving 

images, respectively. In addition, �e the tissue fraction estimated from the Hounsfield unit 

can be calculated as 

 �e�	
 = ��	
 − fgh!ifgj!kklm − fgh!i (12) 

 

where the HUs of air and tissue are taken as fgh!i = −1000  and fgj!kklm = 55, 

respectively (35, 36). The Jacobian value measures contraction or expansion in lung 

motion, revealing local expansion if ]^ > 1 and local contraction if 0 < ]^ < 1. To avoid 

non-invertible transformation, the Jacobian value must be positive, which is enforced by 

constraints on the displacement of B-spline control nodes (30). Also, 2���L	, �M
 can be 

calculated from the Jacobian value as 
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 2���L	, �M
 = ]^�	, �
2��	
 (13) 

With Eq. (13), Eq. (11) can be rewritten as 

 HII^dJ��
 = . 2�D�	
K�e��	
 − ]^�	, �
�e���L	, �M
N
�∈O

D
 (14) 

We recast Eq. (14) so that the matching between the reference and moving images is 

symmetric. Eq. (14) can be rewritten to define the symmetric similarity measure R��
 

with SSTVD as 

 

R��
 = 1
2 . 2�D�	
K�e��	
 − ]^�	, �
�e���L	, �M
N

�∈O

D

                               + 12 . 2�D���
K�e����
 − ]^_`���, �
�e���UVL��, �M
N
�W∈OW

D (15) 

where Ω is the fixed image domain, Ω� is the moving image domain, �e� and �e� are the 

fixed and moving tissue fraction estimated from the Hounsfield Unit (HU), � is the 

forward transformation, �UV is the backward transformation, and ]^  and ]^_`  are the 

respective Jacobian values of the forward and backward transformations. The cost 

function includes information of forward and backward transformations simultaneously 

to determine registration parameters during optimization, defining the symmetric 

similarity criteria. For optimization, the gradient of the similarity function with respect to 

the transformation parameter � is needed, and expressed as: 

XR
X� = . 2�D�	
K]^�	, �
�e���L	, �M
 − �e��	
N∇�L]^�	, �
�e���L	, �M
M

�∈O
     + . 2�D���
K]^_`���, �
�e���UVL��, �M
 − �e����
N∇�K]^_`���, �
�e���UVL��,

�W∈OW

(16

) 



www.manaraa.com

 
 

17 
 

where ∇�= q r
rst , r

rsu , r
rsvw. Based on the constraints (30) that the transformation is 

invertible, we make the assumption that we can choose the sample point �′ as the forward 

transformed point of 	, that is �� = � = �L	, �M and 	 = �UVL��, �M. By making this 

assumption, we can recast both the cost function and cost gradient in terms of the fixed 

image domain, leaving the variable 	 as the independent variable and removing explicit 

reference to the backward transformation and � variable. Using Eq. (9), Eq. (16) gives 

XR
X� = . 2�D�	
K]^�	, �
�e���
 − �e��	
Na∇�L]^�	, �
�e���
M

�∈O
 

+]^�	, �
∇�K]^_`��, �
�e��	
Nc 

 

(17) 

The constraints mentioned in (30) require that the displacements x in each direction and 

the B-spline grid spacing $ fit the condition x < $/z where z = 2.479472335. This 

leads to the need for a multi-level registration strategy, consisting of a sequence of B-

spline grids beginning with a coarse grid of control nodes, and transitioning to finer grids 

of more closely space grids. The coarse grids with farther spacing between control nodes 

capture global deformations, while the finer grids capture local deformations. A 

composite transformation operation links the registration results between levels, see 

Ellingwood et al. (32) for more details. 

2.5 Optimization  

Image registration is an optimization problem and needs an efficient optimization 

algorithm to minimize the cost function with coresponding transformation parameters but 

in all cases, due to the ill-posed nature of registration, the optimization process should be 
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constrained to avoid folding in the moving image, resulting in inconsistent deformation 

and a less physiologically meaningful deformed image (37). Therefore, adding a 

penalizing term to the similarity measure is important due to its ability to enforce 

topology preservation in registration process. This can be accomplished by adding 

regularization terms to the related similarity measure. In other words, the optimization 

process defines the similarity energy ���
 to be optimized as a linear combination of a 

similarity measure R��
 and a regularization term ���
 as  

 ���
 = R��
 +  } ���
 (18) 

where } > 0 is a weighting parameter. The weight } = 0.5 was used in this work. 

Possible regularization models such as linear elasticity (38), viscous fluid (39), and 

analytic regularization for landmark-based registration (40) have been developed to 

regularize the transformation. In this work, we used an unbiased registration constraint 

(41) as 

 ���
 = .�]^�	, �
 − 1
 logC7�]^�	, �
�
�∈O

 (19) 

which is based on a log-normal distribution of the Jacobian determinants. The inverse 

consistency property of this method was shown in the study of unbiased fluid registration 

methods (42). A limited-memory quasi-Newton minimization method with bounds on the 

variables, L-BFGS-B (43) is used along with the multiresolution strategy to improve the 

computational efficiency and avoid local minima (15, 32). With the SSTVD measure and 

using Eq. (17), Eq. (18) and Eq. (19), we have the gradient of ���
 as 

X�
X� = . 2�D�	
K]^�	, �
�e���
 − �e��	
Na∇�L]^�	, �
�e���
M

�∈O
 (20) 
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+]^�	, �
∇�K]^_`��, �
�e��	
Nc 

+�1 + logC7�]^�	, �
� − 1 ]^�	, �
⁄ � 

 

2.6 Inverse Consistency Error 

The symmetric method can be evaluated via inverse consistency error (ICE). ICE is 

defined as an average distance between the original point and its mapped point in the 

reference image after two subsequent forward and backward transformations (�� ∘ �� or 

�� ∘ �� ) to the moving image and therefore can give an evaluation criteria for a 

consistent pointwise correspondence mapping between the reference and moving images 

(24, 44). It is defined as 

 �HR =  ‖	 − ��� ∘ ��
�	
‖ (21) 

where �� and �� are the forward and backward transformations, respectively. The 

maximum of ICE is also defined as  

 ��&�HR = ��&� ‖� − ��� ∘ ��
��
‖
 or  ��&�‖	 − ��� ∘ ��
�	
‖
 (22) 

The averaged ICE for forward and backward transformations between the fixed and 

moving images provides a criterion to assess the symmetry condition of a similarity 

measure.  

2.7 GPU and Multi-threaded CPU Implementation 

The implementation of GPU and multi-threaded CPU versions was developed 

extending the procedure reported in Ellingwood et al. (32) (Fig. (2-1)). The procedure 

involved two key steps in designing an effective GPU implementation. First, the 

uniformly spaced grid of control nodes for parameterizing the cubic B-spline 
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transformation was aligned with the uniformly spaced voxel grid, partitioning it into tiles 

of equal numbers of voxels. Due to the uniform spacing of the voxels, corresponding 

voxels within tiles share the same local coordinates (normalized between 0 and 1). B-

spline product weights could then be precomputed for a single tile, with computation 

required only one time during initialization, and stored in a lookup table (LUT) for reuse, 

creating tremendous computational and memory efficiencies. Second, in order to 

maintain the uniform spacing of the voxel grid necessary to utilize the B-spline LUTs for 

subsequent resolution levels of registration within the multi-level framework, a 

diffeomorphic multi-level transform composite (DMTC) method was utilized (see 

Ellingwood et al. (32) for details). Implementation of the GPU version of the symmetric 

SSTVD method required additional memory storage and computation for the gradient of 

the moving image. A pseudo-code is included in the supplementary section 2.11.1 for 

clarity; see Ellingwood et al. (32) for a detailed description. Registration accuracy results 

for DMTC based on annotated landmarks also are included in section 2.8.4.   

 

 

Figure 2-1 Division of work between CPU and GPU during the SSTVD computations. 
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2.8 Results 

Two sets of experiments were performed to evaluate the symmetric registration 

method. First, registration of synthetic data sets consisting of two 2-D images (so-called 

Circle to C-shape test) was assessed based on the symmetric SSD method. Second, lung 

CT datasets from six normal human subjects (previously described by Yin et al. (15)) 

were used to assess the proposed SSTVD symmetric similarity method. For these 

subjects, two volumetric scans were acquired with a Siemens Sensation 64 multi-detector 

row CT scanner (Forchheim, Germany) during breath-holds near FRC and TLC in the 

same scanning session for each subject. The University Institutional Review Board 

approved the scanning protocol. Each volumetric dataset contains 550-760 image 

sections with a section spacing from 0.5 to 0.7 mm and a reconstruction matrix of 512 ×
512 pixels. In-plane pixel spatial resolution is approximately 0.6 × 0.6 mmD. The 

software Apollo (VIDA Diagnostics, Coralville, Iowa) was used to segment the lungs and 

lobes of CT images. 

2.8.1 Assessment Based on 2-D Synthetic Objects 

Fig. 2-2(a) shows the synthetic data of 2-D Circle and C-shape images from the 

classical registration example, each of size 256 × 256 pixels with pixel size of 1.0mm ×
1.0mm. A composite transform consisting of eight levels of B-splines was used to 

describe the deformation. Also the displacement field and transformed shape of the 

deformed grid space were compared for non-symmetric and symmetric SSD similarity 

measures and depicted in Fig. 2-2(b) and Fig. 2-2(c). The symmetries of these methods 

were quantified by inverse consistency error. Results for forward and backward 
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deformations and their related ICE values are tabulated in Table 2-1 for two different ICE 

ranges. 

Table 2-1 Comparison results for mean of ICE values for 2-D non-symmetric vs. symmetric SSD 
method (C-shape as the fixed image) and their error ranges (percentage of the voxel numbers 
with ICE less than 40 and greater than 40 mm divided by the total pixel number). 

  Method-SSD  ICE range   Error range [%] 

Non-Symmetric Mean [mm] 36.32 ICE < 40 67.9 
   ICE > 40 32.1 

Symmetric    
 Mean [mm] 22.87 ICE < 40 97.5 
   ICE > 40 2.4 

 

Clearly, from Table 2-1 the mean values of ICE are lower in the symmetric method than 

the non-symmetric method. In addition, the symmetric method yields a more symmetrical 

grid shape as seen in Fig. 2-2(b) and Fig. 2-2(c). The distributions and histograms of ICE 

for non-symmetric and symmetric methods are shown in Fig. 2-3(b). 
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(a) 

  
(b) 

  
(c) 

Figure 2-2 Classical Circle to C-shape experiment (a) and Registration displacement field and 
transformation grid shape for non-symmetric and symmetric for C-shape as the fixed image: (b) 
Displacement vector field non-symmetric (left) vs. symmetric (right) (c) Transformation shape in 
deformed grid space for non-symmetric (left) vs. symmetric (right). 
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(a) 

  
(b) 

Figure 2-3 (a) distribution of inverse consistency error for non-symmetric (left) vs. symmetric 
(right) method for SSD registration of Circle and C-shape (C-shape as the fixed image) (b) 
histogram of inverse consistency error for non-symmetric (left) vs. symmetric method (right) for 
SSD. 

 

2.8.2 Validation for 3-D Lung CT Datasets 

Mean of ICE values in different ranges (ICE < 15 mm and ICE > 30 mm) for 

forward and backward (non-symmetric) and symmetric methods for both SSD and 

SSTVD are tabulated in Table 2-2. Fig. 2-4 shows an example of histograms for ICE 

values with SSD and SSTVD similarity measures for both non-symmetric and symmetric 

methods to illustrate the distribution of different ICE values. The ICE contours for non-

symmetric and symmetric methods for both SSD and SSTVD within the sagittal planes of 

the lung are displayed in Fig. 2-5. 
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Table 2-2 The mean of ICE for forward (��), backward (��) and symmetric (�I) methods (TLC 
as the fixed image) and their error ranges (percentage of the voxel numbers with ICE less than 15 
and greater than 30 mm divided by the total pixel number). 

Experiment 

 
SSD Mean 

[mm] 
Error range [%]  SSTVD  Mean 

[mm] 
Error range [%] 

< 15 mm > 30 mm < 15 mm > 30 mm 

Case 1 �� �� �I 

23.36 
31.24 
16.77 

35.0 
28.1 
44.4 

28.9 
47.5 
5.9 

�� �� �I 

6.78 
20.40 
5.53 

88.8 
49.9 
90.9 

2.9 
30.8 
2.5 

Case 2 �� �� �I 

14.83 
25.23 
11.62 

56.5 
46.2 
70.6 

8.7 
29.1 
0.9 

�� �� �I 

6.43 
19.93 
5.56 

90.1 
61.9 
95.0 

0.8 
28 
0.7 

Case 3 �� �� �I 

14.16 
23.74 
11.56 

62.2 
50.3 
70.2 

6.4 
29.3 
0.44 

�� �� �I 

5.44 
17.05 
4.96 

89.1 
63.8 
96.1 

1.0 
24.1 
0.2 

Case 4 �� �� �I 

12.81 
25.48 
12.07 

60.3 
46.4 
66.6 

1.0 
36.33 

0.8 

�� �� �I 

6.22 
18.77 
5.532 

80.0 
54.2 
92.2 

1.1 
27.6 
0.9 

Case 5 �� �� �I 

21.01 
28.03 
16.41 

37.7 
34.1 
45.9 

23.3 
36.5 
4.69 

�� �� �I 

9.03 
19.40 
5.57 

83.7 
53.5 
95.4 

1.3 
23 

0.84 
Case 6 �� �� �I 

24.48 
33.10 
18.06 

36.7 
31.7 
41.3 

33.7 
39.2 

12.52 

�� �� �I 

10.60 
23.52 
7.10 

75.4 
45.3 
91.5 

4.3 
30.5 
1.7 
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Figure 2-4 Distribution of inverse consistency error for non-symmetric (backward and forward) 
vs. symmetric (TLC as the fixed image) for SSD (left) vs. SSTVD (right) for (a) forward (b) 
backward (c) symmetric transformations. 

 

 

 

 

(a) 

(b) 

(c) 
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Figure 2-5 Inverse consistency error [mm] for non-symmetric vs. symmetric method (TLC as the 
fixed image) for sagittal plane. SSD (left) vs. SSTVD (right) for (a) forward (b) backward (c) 
symmetric transformations. 
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2.8.3 GPU Performance Results of Symmetric Method 

During code testing, we determined the cost and cost-gradient computations for 

the similarity measure were responsible for over 60% of the total computational time for 

the symmetric image registration code (optimization taking most of the remaining 40%, 

pseudo-code for implementation of the symmetric method is presented in the section 

2.11.1). The vast amount of data-parallelism present within this component of the code 

indicated it was well-suited for GPU implementation. The procedure developed in 

Ellingwood et al. [23] was followed and is discussed in section 2.7. 

The GPU version of symmetric registration method was run on a Nvidia Tesla 

K40 GPU on the XSEDE supercomputing resource Maverick, a supercomputer dedicated 

to high-performance GPGPU computing and data visualization at the Texas Advanced 

Computing Center (TACC) at the University of Texas. The Tesla K40 consists of 15 

streaming multiprocessors of 192 Cuda cores each, for a total 2880 Cuda cores, and total 

memory (DRAM) of 12GB with bandwidth 288 GB/sec. The results for the GPU 

implementation were verified against those of the single-threaded CPU implementation, 

with the CPU implementation serving as the reference. 

The performance results for the GPU implementation (using a Nvidia Tesla K40) 

are compared to single and twelve-threaded CPU results (run an Intel Xeon E5-2620 6-

core CPU clocked at 2.1 GHz) and reported in two ways – total times and speedup per 

resolution level. The results in Fig. 2-6 show the speedup factors per level of registration, 

where speedup factor is defined as the time_(serial CPU)/time_GPU. At every level, the 

GPU performs better than each of the multi-threaded CPU versions. Greatest speedup 

occurs for GPU over CPU at the highest resolution level, where the GPU version 
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demonstrated an average of 43 times speedup and nearly 5.1 times speedup over the 

single-thread and twelve-threaded CPU versions, respectively.  

For total times, registration time (cost, cost gradient, and optimization) and 

isolated cost and cost gradient computations, totaled over all resolution levels, are 

compared. As shown in Table 2-3, total time decreased substantially with use of GPU as 

compared to twelve-threaded CPU results. The Tesla K40 substantially improved the 

runtime performance over the single-threaded version for total registration time (13.7 

times faster) and the isolated cost plus cost gradient total time targeted for GPU 

acceleration (38 times faster). The GPU performance is also better than the 12-threaded 

version, performing 1.8 times faster in total registration time and 5 times faster in total 

cost plus cost gradient time. Scalability of the multi-threaded CPU version flattens after 

12 threads, yielding performance only slightly better for 24 threads compared to 12 

threads. 

Figure 2-6 Speedup factors for the accelerated symmetric cost and cost-gradient component of 
code, comparing the GPU implementation to single- and twelve-threaded (1T, 12T) CPU 
versions. Values shown are averaged for subjects at each of the 8 levels of the image pyramid. 
Image results for B-Spline grid spacing so that the number of voxels in a tile are multiples of 4 
per direction. 
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Table 2-3 Total registration time and total cost and gradient computational time for GPU and 
CPU implementations of symmetric SSTVD. Note: Time is totaled over all 8 levels of 
registration and averaged for subjects. *K40 GPU information: Total memory: 12GB, Memory 
bandwidth: 288 GB/se with 15 streaming multiprocessors (SMX) consisting of 192 CUDA cores. 

Version Total Registration Time [min] Total Cost and Cost Gradient Time 
[min] 

K40* GPU 9.0 2.0 
12T CPU 16.1 9.8 
1T CPU 123.5 75.3 

 

2.8.4 Landmark Validation  

Landmarks located at vessel bifurcation of TLC and FRC of six normal human 

subjects (15) are used to assess registration accuracy. These landmarks are picked up 

based on a semi-automatic landmark annotation system (45) and each pair included 120-

210 landmarks. A comparison of landmark errors between SSTVD and SSD methods, 

averaged over six subjects is shown in Table 2-4. The landmark error shows the distance 

between corresponding landmarks in the TLC to FRC before registration and after 

registration. The landmark distances are averaged together based on initial distance (s) of 

20, 40, 60 mm. 

A comparison of landmark errors showed that both symmetric and non-symmetric 

SSTVD methods decreased the landmarks error to less than 3 mm for all initial distance, 

where for s < 20 mm, 20 ≤ s < 40 mm, 40 ≤ s < 60 and s ≥ 60, both non-symmetric and 

symmetric SSD yielded the landmark errors about 7 mm, 10 mm, 17 mm and 25 mm, 

respectively. This means that both non-symmetric and symmetric SSTVD methods 

showed very good accuracy for image registration. Although the accuracy of symmetric 

SSTVD method appears to be slightly better than that of non-symmetric one, their 

difference is statistically insignificant (p value > 0.05). 
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Table 2-4 Averaged landmark errors between SSTVD and SSD method for six normal human 
subjects. 

 Non-Symmetric Symmetric 
Initial 

distance s 
[mm] 

SSD 
[mm] 

SSTVD 
[mm] 

p value 
SSD 
[mm] 

SSTVD 
[mm] 

p value 

s < 20 8.09±3.42 1.2±1.1 <0.0001 7.18±4.02 1.19±1.2 <0.0001 

20 ≤ s < 40 11.31±4.24 2.48±3.32 <0.0001 10.44±6.17 2.05±1.3 <0.0001 

40 ≤ s < 60 17.36±9.01 3.04±2.63 <0.0001 17.01±4.90 2.72±2.43 <0.0001 

s ≥ 60 26.67±5.35 2.93±2.59 <0.0001 25.0±7.15 2.84±2.81 <0.0001 

 

2.9 Discussion 

We have presented a novel generic framework for an intensity-based symmetric 

registration method that can be applied to parametric transformation models and can be 

extended to more complicated similarity measures. This method was implemented by 

using a cubic B-spline transformation and solved by minimizing the symmetric form of 

the similarity measures (SSD and SSTVD) with the regularization term included for 

topology preservation. Invertibility of each B-spline was achieved by imposing 

displacement constraint of the control nodes.  

To evaluate the proposed methods, we first performed registration on a classical 

Circle to C-shape experiment (Fig. 2-2(a)) by using both symmetric and non-symmetric 

SSD methods. Comparison of displacement vector fields and transformation grid shape in 

Fig. 2-2(b) and Fig. 2-2(c) shows that both symmetric and non-symmetric methods gave 

almost the same displacement fields where the symmetric SSD demonstrated a regular 

invertible transformation with more symmetrical grid shape than the non-symmetric. 

Furthermore, the results of ICE (Table 2-1) show that the symmetric method improved 

the consistency issue, demonstrated by decreasing the mean values of ICE errors by 37%. 

This improvement is more evident from the histograms in Fig. 2-3(b), where the 
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symmetric method shifted higher ICE values to the lower ranges so that percentage of 

voxels with ICE < 40 mm is approximately 98% of the total voxels number, compared to 

just 68% for the non-symmetric method. However, there are some high ICE values (less 

than 2.5% of total voxels number) which occurred at the object boundaries as seen in Fig. 

2-3(a). One possible reason is that the balancing of the similarity measure and the 

regularization terms in the optimization process can cause these errors at the object edges. 

This happened for both symmetric and non-symmetric methods because the penalizing 

(regularization) term prevents the fixed image to completely transform into the moving 

image trying to preserve the image registration topology.  

Results for 3-D cases for both symmetric and non-symmetric (forward and backward) 

transformations are tabulated in Table 2-2. Values are based on the mean value of ICE 

and also error range, which is defined as the percentage of the voxel numbers with ICE 

less than or greater than a specific value (ICE < 15 mm and ICE > 30 mm ranges were 

chosen for both symmetric and non-symmetric cases so that a common measure can be 

used in comparison of the results for all the subjects). The symmetric method gave better 

results in terms of ICE improvement so that in all cases, the mean values of ICE for the 

symmetric method were lower than their counterparts, forward and backward 

transformations (non-symmetric methods) for both SSD and SSTVD. Also, mean values 

of ICE with SSTVD were significantly lower than those of SSD. This is consistent with 

the fact that the SSTVD method accounts for the change of intensity and therefore gives a 

more precise similarity measure criterion and consequently lower ICE (Yin et al. (15)). 

Also for both SSD and SSTVD, ICE values for backward transformation were higher 

than forward transformation because in the case of backward transformation, mean values 
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of ICE were calculated within the FRC domain as the fixed image having lower 

resolution than TLC. Impact of the symmetric method on decreasing error ranges for both 

SSD and SSTVD can be seen from the histograms in Fig. 2-4. It should be noted that, 

even though the inverse consistency constraint was not imposed directly in the related 

cost function, the symmetric method showed a significant improvement for ICE by 

decreasing the number of voxels with high ICE values for both SSD and SSTVD. As 

expected, SSTVD was more effective at decreasing error ranges than SSD. For instance, 

for all cases, the symmetric SSTVD method decreased the percentage of voxels with ICE 

> 30 mm to less than maximum 2.5% of the total number of voxels, and simultaneously 

increased the percentage of voxels with ICE < 15 mm to more than minimum 91% of the 

total voxels number, while these values for SSD were 12.5% and 70.6%, respectively for 

the same error range criterion. Histograms in Fig. 2-4 show that the symmetric method 

not only decreased ICE for both SSD and SSTVD, but also decreased the range of higher 

ICE values significantly so that ICE values shifted toward the lower values. Fig. 2-5 

shows an example of a distribution of ICE values in the sagittal plane of the lung with 

both SSD and SSTVD methods for forward, backward and symmetric transformations. 

The region with higher ICE values lies near the diaphragm. This happens due to larger 

displacement errors in regions near the diaphragm which is consistent with the fact that 

registration errors in the regions near the diaphragm are greater than other regions as 

reported by Yin et al. (15). As seen from Fig. 2-5, both symmetric SSD and SSTVD 

methods decreased ICE, especially in the basal part of lung (near the diaphragm) where 

the SSTVD method was more effective in decreasing ICE in regions with large 

deformation. However, similar to the 2-D cases, there are some high ICE values (less 
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than 1% for all subjects) at the edge of the lung as a result of a trade-off between the 

regularization part and the similarity measure. This study used FRC images to test the 

inverse consistency error but our approach can be used for other lung volumes such as 

RV or other phases between FRC (RV) and TLC. We tested our code on another cohort 

using RV and the results showed the consistency error decreases in both RV and FRC as 

moving images.   

2.10 Conclusion 

We symmetrized the cost function into forward and backward transformations and 

recast the gradient of the cost function in such a way that it only depends on forward 

transformation so that the cost function does not explicitly require the inverse 

transformation of �, resulting in a simpler form of the gradient of the cost function. We 

have demonstrated, in both 2-D synthetic images and 3-D lung data sets, that the 

symmetric method greatly improves the inverse consistency and its GPU version can be 

used as a powerful technique with significant increase in speedup factor for lung volume 

registration. While we have focused upon lung imaging, the generic nature of the 

proposed approach can be potentially applied to other organs.  

2.11 Appendix: Supplementary Material 

2.11.1 Symmetric Registration Pseudo-code 

A pseudo code of the symmetric implementation in the image registration code is 

presented for clarification of the main kernel structure. Calculations of the 

transformation, the cost and cost-gradient computations for the SSTVD similarity 

measure are included in the pseudo code of the symmetric function. The pseudo code 

focuses on the symmetric implementation and the details of GPU implementation are 
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excluded. For more details on GPU implementation and its Pseudo-code, please see 

Ellingwood et al. (32). For parallelization process, tiles are assigned to blocks and the 

main kernel partitions the tile into sub-tiles of 64 voxels in 3D, and then each voxel is 

assigned a thread. 

Pseudo code: Main kernel for symmetric SSTVD function 

1. // Get block index B and thread index T  
2. // Allocate shared memory for Cost  
3. // Allocate shared memory for temp Cost gradient values  
4. // Allocate shared memory for temp Cost gradient bins  
5. // Partition tile into subsets of 64 voxels, begin loop over these subsets with 

index pTile For pTile = 0 to TileSize/64 
6. // B maps corresponds to voxel tile 
7. // T maps to voxel within subset pTile with coordinate 	 = �&, ', (
 
8. // Compute local voxel coordinates and local indices within tile B 

9. 1 = & $�⁄ − 9& $�⁄ ;, 2 = ' $�⁄ − ?' $�⁄ @, 4 = ( $�⁄ − 9( $�⁄ ; 
10. 8 = 9& $�⁄ ; − 1, > = ?' $�⁄ @ − 1, A = 9( $�⁄ ; − 1 

11. // Compute transformation function 

12. Compute transformation ��L&, xM for 	 = �&, ', (
 where �� is the current 
transformation from DMTC (32) 

13. Compute �^(D is defined as the determinant of derivative matrix of 
deformation) 

14. // Compute Jacobian value ]^  

15. ]^L&, xM = det(�^) 
16. // For multilevel B-spline technique for compute current level transformation 

and warping image at the previous level i. 
17. ��L&, xM = ����8�����L&, xM
 
18.  ]�L&, xM = Interpolate(��L&, xM, Image ]�) 
19. ] �̂L&, xM = ]�L&, xM]^�L&, xM 
20. // Calculation of symmetric similarity measure 

21. 
r�_V

r� = −L]^MUC r�
r� 

22. // Compute SSTVD similarity measure 
23. // The process repeats for each sub-tile within the tile, accumulating the cost 

gradient   partial sums in shared memory. 

24. // HII^dJ��
 += ∑ K2��	
�e��	
 − 2���L	, �M
�e���L	, �M
N�∈O D
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25. // Compute and summation of symmetric SSTVD similarity measure 

26. R�ϕ
 += C
D ∑ 2�D�	
K�e��	
 − ]^�	, �
�e���L	, �M
N�∈O

D +  C
D ∑ 2�D���
K�e����
 −�W∈OW

]^_`���, �
�e���UVL��, �M
ND
 

27. // Compute the derivative of symmetric similarity measure 
28. // Setting �� = � = �L	, �M and 	 = �UVL��, �M yields the following: 

29. 
r�
r�  += ∑ 2�D�	
K]^�	, �
�e���
 − �e��	
Na∇�L]^�	, �
�e���
M +�∈O
 ]^�	, �
∇�K]^_`��, �
�e��	
Nc 

30. // Final form of symmetric similarity measure after adding regularization term 

31. 
rI
r�  += ∑ 2�D�	
K]^�	, �
�e���
 − �e��	
Na∇�L]^�	, �
�e���
M +�∈O
 ]^�	, �
∇�K]^_`��, �
�e��	
Nc 
+�1 + logC7�]^�	, �
� − 1 ]^�	, �
⁄ � 
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CHAPTER 3: IMAGING-BASED CLUSTERS IN CURRENT SMOKERS OF THE COPD 
COHORT ASSOCIATE WITH CLINICAL CHARACTERISTICS IN SPIROMICS 

 

3.1 Introduction 

Chronic obstructive pulmonary disease (COPD) is currently the third leading cause of 

death in the United States (1). COPD is characterized by airflow limitation that is 

incompletely reversible (2), and thus it is identified by the ratio of forced expiratory 

volume in 1 s  over forced vital capacity (FEV1/FVC) at post bronchodilator (COPD is 

diagnosed by post-bronchodilator). The severity is further distinguished by FEV1% 

predicted values by COPD guidelines (3). The ratio of FEV1/FVC has been used as an 

indicator to identify COPD patients in diagnosis of the disease (3), but it may not be 

sensitive enough to differentiate heterogeneous alterations characterized by multiple 

pathologies (46). In contrast, quantitative computed tomography (QCT) can distinguish 

emphysema-predominant and airway-predominant diseases (47). Individual imaging-

based metrics have been derived from both CT and MRI studies of the lungs in both 

COPD and asthma (48). With recent advances in unsupervised clustering of patient 

populations (8, 49, 50), there has been an increased effort to employ these methods for 

grouping sub-populations of patients within both the asthma (51) and COPD 

communities (52–56). 

With the introduction of novel structural and functional imaging-based metrics (57) 

and corrections for inter-site and inter-patient variabilities (58), Choi et al. (59) recently 

integrated all of the imaging-based metrics measured at multi-scales to derive imaging-

based clusters of patients from an asthma population. These clusters were significantly 

associated with clinical characteristics. In the present work, we utilize the same approach, 
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but with an expanded set of variables for quantifying emphysema, functional small 

airways disease, to derive imaging-based clusters in a COPD population with meaningful 

associations to clinical characteristics. For this purpose we have investigated a patient 

population from within the Subpopulations and Intermediate Outcome Measures in 

COPD Study (SPIROMICS) (4) which was initiated to provide robust criteria for sub-

classifying COPD participants and further to identify biomarkers and phenotypes for 

efficient conduct of treatment trials. 

3.2 Methods 

3.2.1 Human Patient Data and QCT Imaging 

From the first 1000 patients recruited into SPIROMICS (4) we performed image 

matching and identified about 800 patients in whom total lung capacity (TLC) to residual 

volume (RV) matches were successful. From these patients with matching data we chose 

to study current smokers falling within strata 2-4 (4) (N = 284) as well as healthy non-

smokers (N = 130). The demographics of these populations are summarized in Table 3-1. 

The current smokers (strata 2 (N = 114), 3 (N = 131) and 4 (N = 39)) were employed to 

derive imaging-based COPD clusters and these were compared with the non-smoking 

healthy controls. We initially performed cluster analysis (60) including both former and 

current smokers, which resulted in less statistically stable clusters based on the Jaccard 

index (90% and 70% for current and both former and current smokers, respectively). This 

suggested that smoking status introduced confounding variables, interfering with many 

metrics such as the emphysema index which is shifted by the effect of inflammation 

(associated with smoking status) on regional lung density (61). Healthy non-smokers 

were used in a control group (69 patients from Stratum 1 of SPIROMICS and 61 from 
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Severe Asthma Research Program (SARP)). The patients were obtained from the NIH-

supported SPIROMICS centers. The demographic and PFT measures were shown in 

Table 3-1. 

3.2.2 Multiscale Imaging-based Variables 

Volumetric CT imaging was carried out during coached breath holds at TLC and 

RV (62), and image analysis was carried out with use of the Apollo software (VIDA 

Diagnostics, Coralville, Iowa).  

Sixty nine post-processed imaging-based variables were employed at both 

segmental and lobar levels, which is an expanded set of existing 57 MICA variables used 

for asthma cluster analysis (59). The four structural variables at segmental level were 

extracted from ten local regions to reflect the regional characteristics (57). These 

variables included bifurcation angle (θ), airway circularity (Cr), wall thickness (WT) and 

hydraulic diameter (Dh), where each variable indicated alteration of skeletal structure, 

alteration of luminal shape, wall thickening and luminal narrowing, respectively. The 

dimensions of WT and Dh were normalized by predicted trachea WT and Dh from healthy 

controls following (57), denoted by WT* and Dh*. The normalization was used for 

eliminating inter-patient variability due to gender, age and height.  

Employing a mass-preserving image registration technique (63), lobar/global 

functional variables were further derived to describe the alterations of lung deformation 

between inspiration and expiration. The variables at lobar levels included fractional air 

volume change (∆Vair
F), the determinant of Jacobian matrix (Jacobian) and anisotropic 

deformation index (ADI), indicating regional contribution of ventilation (lobar fraction of 
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air volume change between TLC and RV), regional volume change, and the degree of 

preferential deformation, respectively. In this study, we also employed three new 

variables; fraction-based small airways disease (fSAD%) to characterize small airway, 

fraction-based emphysema (Emph%) for emphysematous diseases as well as tissue 

fraction at TLC (βtissue). βtissue indicates the portion of tissue volume in each voxel to 

assess a possible alteration of local tissue. The Emph% (98.5% air-fraction as the 

threshold) and fSAD% (90% air-fraction as the threshold) were used instead of using the 

density threshold identifying voxels < -950 HU, to account for scanner variability (58). 

Also, related global (whole lung) variables were included; fSAD% (Total) and Emph% 

(Total), apical-basal distance over ventral-dorsal distance at TLC (lung shape), the ratio 

of air-volume changes in upper lobes to those in middle and lower lobes between TLC 

and RV (U/(M+L)|v), Jacobian (Total) and ADI (Total). Therefore we obtained 32 local 

structural as well as 30 lobar and 7 global variables, giving 69 imaging-based variables. 

These comprehensive imaging variables were then used for a cluster analysis. Full names 

of each variable are described in Abbreviations used section. 

3.2.3 Clustering and Statistical Analysis 

We compared three general clustering methods including K-means, Hierarchical 

(24) and Gaussian finite mixture model-based (25) fed by principal components to find 

the best clustering method based on the internal property and stability of clusters (26, 27) 

(see the supplementary section 3.6 for more details of principal component analysis 

(PCA)). The K-means clustering showed more stability and an optimal number of clusters 

fitted for the structure of the imaging data was obtained (Figure 3-7).   
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 Next we performed association tests of imaging-based clusters with demographic 

and clinical variables to investigate the clinical relevance of current clusters. The data 

analysis was performed by R software (version 3.1.1). Kruskal-Wallis and chi-square 

tests were performed to compare differences of continuous and categorical variables, 

respectively. P = 0.05 was taken as the significant level in all tests. 

3.3 Results 

3.3.1 Four Clusters and Imaging-based Characteristics 

Clustering led to four clusters with the sizes of 96, 45, 88 and 55 patients, 

respectively (Table 3-2). Figure 3-1 shows the percentages of emphysema and small 

airway disease (Emph% and fSAD%) for different clusters and the healthy group. Figure 

3-2 summarizes the imaging-based characteristics of the four clusters. The major 

variables which best describe the four clusters were selected with a stepwise forward 

variable selection technique using Wilk’s λ criterion (64). Ten major variables with 

higher Wilk’s λ values are presented to explain structural and functional alterations 

associated with each cluster (Table 3-2). We then performed a decision tree analysis to 

construct a simple predictive model (Figure 3-3). The model comprising 7 discriminant 

variables achieved 89% accuracy in classification. These variables were Jacobian (Total), 

Dh* (sLLL), Dh* (sRLL), WT* (sRUL), WT* (sRML), βtissue (LLL) and fSAD% (Total).  

3.3.2 Associations with Demography and PFT 

Association of clusters with demography and PFT are tabulated in Table 3-3. 

Cluster 1 with normal airway structures was mostly populated in GOLD 0 and stratum 2 

with relatively younger and lower BODE index patients compared to other clusters (P < 

0.05). Unlike Cluster 1, Cluster 4 was mostly populated in GOLD 2, 3, 4 and strata 3, 4, 
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respectively with relatively older patients. Cluster 2 was associated with high BMI. Also 

Cluster 3 was associated with patients who exhibited a relatively low BODE index. 

Cluster 4 patients showed higher BODE index and were relatively older males.   

Both pre-bronchodilator and post-bronchodilation PFT-derived lung function values are 

tabulated in Table 3-3. FEV1/FVC showed a consistent, decreasing pattern from Cluster 

1 to Cluster 4. Patients in Cluster 4 demonstrated significant decreases in FEV1/FVC 

both pre-and post- bronchodilation, while Cluster 1 showed a mean FEV1/FVC of 0.74 

that is above the normal range with a cut off value of 0.7. A similar decreasing pattern 

was found for FEV1 and FVC % predicted values, with the highest and lowest values 

associated with Cluster 1 and Cluster 4, respectively. 

3.3.3 Associations with Symptoms and Disease Histories  

Symptoms and disease histories collected from core data dictionary of 

SPIROMICS (4) are tabulated in Table 3-4. Cluster 4 showed much higher histories of 

chronic bronchitis, emphysema, wheezing and whistling in the chest compared to 

Clusters 1, 2, and 3. The prevalence of symptoms in Clusters 1, 2 and 3 was less likely 

than Cluster 4. Cluster 2 showed an increased history of sleep apnea diagnosed at 

baseline compared to other clusters. Cluster 4 was related to higher smoking pack-years 

at the baseline (P < 0.05 compared to other clusters). 

3.3.4 CAT Score, Activity Limitation and Exacerbation Histories 

Blood biomarkers, baseline CAT score, exacerbation histories as well as activity 

limitation (6-minute walk) are tabulated in Table 3-5. While clusters did not show 

significant difference in blood biomarkers, there was a significant difference for CAT 

score between clusters (P < 0.05). The CAT score for all clusters were more than 10, 
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suggesting respiratory symptoms in patients (symptomatic) (65). While Clusters 1, 2 and 

3 showed relatively similar CAT scores, Cluster 4 showed a higher CAT score than other 

clusters. Severe (since entering the study), total (since entering the study), and total (at 

baseline) exacerbations showed significant difference between clusters with Cluster 4 

having the most severe exacerbations. There was no significant difference in the number 

of exacerbations between Clusters 1, 2 and 3. Also patients in Clusters 2 and 4 were more 

likely to have activity limitations, as their six-minute walk distance and oxygen 

desaturation were lower than other Clusters.  

3.4 Cluster Characteristics 

• Cluster 1: Relatively resistant smokers with preserved pulmonary function  

Cluster 1 had high smoking pack-years (41.79±22.05) with no or minimal airway 

obstruction (FEV1/FVC = 0.74). Cluster 1 was mostly populated by GOLD stage 1 

(66%) with low emphysema and low fSAD%. Cluster 1 showed that structural 

variables including WT*, Dh* and Cr are very close to those of healthy controls. The 

CAT score, BODE index and severe exacerbation history of this cluster were 

relatively low compared to other clusters. Cluster 1 can be considered to be relatively 

resistant smokers with preserved pulmonary function. 

• Cluster 2: Airway-wall-thickening fSAD-dominant patients with obesity and 

activity limitation 

Cluster 2 with smoking pack-years (42.89±18.7) had FEV1/FVC relatively close to 

cut off 0.7. This cluster had the highest BMI among all clusters and higher BODE 

index than Clusters 1 and 3.  Cluster 2 exhibited a decrease of Dh* and Cr compared 
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to Cluster 1, and had the highest WT* and βtissue and the lowest Jacobian among all 

clusters. Cluster 2 also showed an increase of fSAD%, but with Emph% close to that 

of Cluster 1. Cluster 2 showed no significant difference of exacerbation and CAT 

score, although nominally higher compared to Cluster 1. Cluster 2 had decreased six-

minute walk distance and oxygen desaturation, like Cluster 4 (P<0.05 compared to 

Cluster 1). Thus, Cluster 2 can be classified as wall thickening, lumen narrowing 

fSAD-dominant patients with obesity and activity limitation. 

• Cluster 3: Airway-wall-thinning fSAD-dominant patients 

Compared to Clusters 1 and 2, Cluster 3 with smoking pack-years (47.06 ±19.39, 

P>0.05) showed a continued increase of fSAD% (P<0.05) with similar Emph% 

(P>0.05). Dh* showed significant decrease as compared with Cluster 1, but no 

significant difference from that of Cluster 2. Also WT* decreased compared to 

Clusters 1 and 2 (P<0.05). FEV1/FVC (=0.63) for Cluster 3 remained close to the 

normal range with no significant difference for the three categories of exacerbation 

(severe, total and total at baseline) between Clusters 1, 2 and 3. Cluster 3 had 58% of 

patients in GOLD stages 2-4 and had a CAT score close to Clusters 1 and 2. While 

Cluster 3 did not show significant difference in six-minute walk distance compared to 

Cluster 2, its oxygen desaturation decreased to that of Cluster 2 (P<0.05). Cluster 3 

can be categorized as fSAD-dominant patients with luminal narrowing and decreased 

wall thickness. 

• Cluster 4: Severe emphysema-fSAD-mixed patients with severe airway luminal 

narrowing and wall thinning 
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Cluster 4 had significantly different smoking pack-years (54.95±21.03) compared to 

other clusters. It had a higher CAT score along with more exacerbations and lower 

activity limitations. Cluster 4 also showed significant elevation of emphysema and 

small airways disease (fSAD%↑↑ and Emph%↑↑) simultaneously, significant 

decrease of lung deformation (Jacobian↓↓ and ADI↓↓) and significant luminal 

narrowing (Dh*↓↓, P<0.05 compared to Clusters 1, 2, and 3) and decreased wall 

thickness (WT*↓↓, P<0.05 compared to Clusters 1 and 2). It also had much lower 

FEV1/FVC for both baseline function and maximal lung function after bronchodilator 

use among clusters accompanying higher BODE index. Although lymphocyte% did 

not reach statistical significance level (P = 0.08), it implied a lower percentage than 

other clusters. Therefore, Cluster 4 can be classified as severe emphysema-fSAD-

mixed patients with severe luminal narrowing and decreased wall-thickness as well as 

altered lung function. 

3.5 Discussion  

In the present study, we applied MICA (59), which utilized an expanded set of 69 

QCT imaging-based variables at both segmental and global scales, to derive statistically 

stable clusters in SPIROMICS current smokers with unique structural and functional 

characteristics, and establish their associations with clinical metrics. Cluster 1 comprised 

relatively resistant smokers with preserved pulmonary function (FEV1/FVC>0.7) and 

symptomatology (CAT>10). Cluster 2 was characterized by airway wall thickening, 

fSAD-dominance, obesity and activity limitation. Cluster 3 exhibited airway wall 

thinning and fSAD-dominance. Both Clusters 2 and 3 had FEV1/FVC close to the cut off 
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threshold of 0.7. Cluster 4 had mixed emphysema-fSAD with severe airway luminal 

narrowing and wall thinning as well as altered lung function. 

To better understand the differences between spirometry-based GOLD stages and 

imaging-based clusters, Figure 3-4 shows the distributions of GOLD 0-4 stages and 

Clusters 1-4 of the current smokers on a parametric response map (PRM) (66). Except 

Cluster 2, Clusters 1, 3 and 4 appear to align with the path of the five GOLD stages. Wan 

et al. (67) studied a cohort of GOPDGene subjects with post-bronchodilator preserved 

ratio impaired spirometry (PRISm), characterized by a reduced FEV1 (<0.8) with a 

preserved FEV/FVC ratio (≥0.7).  They reported that PRISm subjects exhibit increased 

BMI, reduced 6-minute walk, increased segmental airway wall area percentage, and 

increased respiratory symptoms (67), resembling both imaging and clinical characteristics 

of our Cluster 2. Thus, although only ~ 3% of the current smokers in this study met the 

spirometry criteria for PRISm, Figure 3-5 displays the distributions of GOLD 0-4 stages 

and Clusters 1-4 of the same subjects on a post-bronchodilator FEV1-FEV1/FVC map. 

Cluster 2 is located nearest to the PRISm quadrant defined by the above spirometry 

criteria, as compared to GOLD 1 and 2. While a further study on a large PRISm cohort is 

needed to establish the link between imaging-based Cluster 2 and PRISm, the above 

analysis suggests that the current approach may be able to identify a clinically 

meaningful sub-population with COPD as compared with spirometric classification. 

Castaldi et al. (53) classified four clusters in current and former smokers from the 

COPDGene study using four variables (features); FEV1% predicted, CT-quantified 

emphysema, segmental wall area% and emphysema distribution. Their respective 

Clusters 1-4 are; relatively resistant smokers (i.e., no/mild obstruction and minimal 
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emphysema despite heavy smoking), mild upper zone emphysema-predominant, airway 

disease-predominant and severe emphysema, with Clusters 2 and 4 having strong genetic 

associations. They included a PFT measure (FEV1% predicted) as one of input features 

for cluster analysis, which is different from our MICA approach employing solely 

imaging-based variables to identify clusters and then establish associations of derived 

clusters with PFTs and other clinical measures and symptoms. Their clusters appear to 

overlap with our clusters. For example, our Cluster 1 (or 4) is similar to their Cluster 1 

(or 4). Although our Cluster 2 and 3 had relatively lower FEV1/FVC (but being close to 

the cut-off threshold of 0.7) than that of Cluster 1, they exhibited a significantly increased 

fSAD% (P<0.05) compared to Cluster 1 without a significant increase in Emph%. Thus, 

our Cluster 2, which exhibited increased fSAD%, thicker airway walls, the highest BMI, 

high BODE index and low Emph%, may correspond to their Cluster 3 being described as 

airway-predominant disease, thicker airway walls, lowest average emphysema of all 

cluster and high BMI. Our Cluster 3 showed a relatively higher upper/lower emphysema 

ratio than others (Table 3-6); being similar to their Cluster 2 characterized by mild upper 

zone-predominant emphysema. Castaldi et al. (56) further investigated reproducibility of 

clustering analysis across multiple COPD cohorts using a set of common variables, 

suggesting that COPD heterogeneity may be characterized as a continuous trait.  

Woodruff et al. (65) divided patients (including both current and former smokers, 

the former of which included patients assessed in the current study) from the SPIROMCS 

study into five categories A-E: (A) never smoked, preserved pulmonary function with (B) 

CAT ≤10 (asymptotic) and (C) CAT ≥ 10 (symptomatic), mild-to-moderate (GOLD stage 

1 or 2) with (D) CAT ≤10 and (E) CAT ≥ 10. The symptomatic patients with preserved 
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pulmonary function in category C had greater airway-wall thickness, but did not have 

higher Emph%, as compared with asymptotic patients. These category-C patients were 

younger with higher BMI and were more likely current smokers. These characteristics 

were similar to those of Clusters 1 and 2. Cluster 1 included patients that had thicker 

airway walls compared to Clusters 3 and 4, and had minimal-to-no emphysema. In 

addition, Cluster 2 exhibited several similar characteristics with Cluster 1, including 

lower symptomatology with CAT ≥ 10, thicker airway walls, minimal-to-no emphysema 

and FEV1/FVC=0.68 (close to 0.74 for Cluster 1) as well as the highest BMI and βtissue 

among all clusters. Nonetheless, different from Cluster 1 but similar to Cluster 4, Cluster 

2 exhibited severe activity limitations and had relatively higher fSAD% and lower 

Jacobian. The major difference between Clusters 2 and 4 is that Cluster 2 had the highest 

BMI and βtissue. This suggests that symptomatic current smoker patients in category C 

with preserved pulmonary function may be further divided into two sub-groups (Clusters 

1 and 2) with distinct characteristics. 

Garcia-Aymerich et al. (49) identified three groups in a cohort of 342 patients 

recruited for the Phenotype and Course of COPD (PAC-COPD) study in Spain, using a 

comprehensive set of clinical, functional, biological and imaging metrics. Groups 1, 2 

and 3 had respective FEV1/FVC of 0.44, 0.57 and 0.61. In addition to milder airflow 

limitation, Group 3 exhibited high BMI (obesity), systemic inflammation, cardiovascular 

disease, diabetes and activity limitation. These characteristics appear to overlap with 

those of our Cluster 2. Sood et al. (68) suggested that higher BMI (obesity) might 

contribute to systemic inflammation.  
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Our study here has several limitations. It focused on current smokers and was a 

cross-sectional study. In the future, the analysis shall be extended to include former 

smokers and compared with the current analysis. Also, our analysis will be extended to 

available longitudinal data and cross validation shall be performed to examine cluster 

transition and stability over time. While our use of image matching is refined to the level 

of accounting for lobar slippage, it requires segmentation of the lobes at both inspiration 

and expiration. Also instead of analysis progression from clusters 1 to 4 each cluster can 

be consider as a distinct phenotypes which might help physicians for better assessment of 

the disease. Also the importance of upper lob pre-dominant disease vs lower lob pre-

dominant disease as well as heart effect of COPD imaging variables can be assessed 

using cluster analysis. Also for PRM (Figure 3-6), the effect of emptying emphysema (It 

is a term for voxels which are labeled emphysema at TLC but which are denser than -856 

at RV) can be assessed for a new definition of emphysema: emptying vs non-emptying 

emphysema.         

In conclusion, using K-means clustering method we found four distinct stable 

clusters of COPD subtypes. These are Cluster 1, non-severe COPD with normal airway 

structure (relatively resistant smoker); Cluster 2, a mix of non-severe and severe COPD 

with fSAD dominance, low emphysema percentage, high tissue fraction with wall 

thickening; Cluster 3, a mix of non-severe and severe COPD, fSAD dominance with 

decreased wall thickness and luminal narrowing; Cluster 4, a mix of severe fSAD and 

emphysema with significant alterations in functional and structural variables. A decision 

tree analysis with only 7 discriminant imaging-based variables allows classification with 

an accuracy close to the “original” cluster membership. The unique structural and 
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functional characteristics observed in each cluster can help shed light on the existing 

heterogeneous nature of the disease.    

Table 3-1 Demography, baseline (Pre-bronchodilator) and maximal (Post-bronchodilator) 
pulmonary function tests for 130 Stratum 1 (healthy), 114 Stratum 2, 131 Stratum 3 and 39 
Stratum 4 patients. 

 
Stratum 1 
(Healthy) 

Stratum 2 Stratum 3 Stratum 4 P value 

Demography 

 N = 130 N = 114 N = 131 N = 39  

Age, yrs 
47.8 

(16.9) 
53.7  
(8.1) 

62  
(8.1) 

62.6  
(7.7) 

< 0.0001 

BMI, kg/m2 
27.4  
(5.5) 

28.4  
(5.3) 

26.3  
(4.8) 

23.8 (4.9) < 0.0001 

Gender, 
(Male/Female %) 

41.5/58.5 49.1/50.9 61.8/38.2 69.2/30.8 0.039 

Race, Caucasian/ 
African 

American/ Other 
(%) 

71.5/16.2 
/12.3 

45.6/48.2 
/6.1 

77.1/19.1 
/3.8 

71.8/20.5 
/7.7 

< 0.0001 

Baseline lung function† 

 N = 130 N = 114 N = 131 N = 39  

FEV1 % predicted 
100  
(13) 

93  
(14) 

64  
(18) 

34  
(7) 

< 0.0001 

FVC % predicted 
99  

(11) 
98  

(14) 

87  
(19) 

67  
(16) 

< 0.0001 

FEV1/FVC × 100 
80  
(7) 

75  
(6) 

56  
(8) 

40  
(11) 

< 0.0001 

Maximal lung function‡ 

 N = 105 N = 114 N = 131 N = 39  

FEV1 % predicted 
102  
(11) 

99 (14) 
73  

(16) 
40  
(7) 

< 0.0001 

FVC % predicted 
99  

(10) 
100  
(13) 

96  
(18) 

78 
 (17) 

< 0.0001 

FEV1/FVC × 100 
82  
(6) 

78 
 (5) 

58  
(8) 

41  
(11) 

< 0.0001 

Values expressed as mean (SD) or number (%). Kruskal-Wallis and chi-square tests were 
performed for continuous and categorical variables. †Baseline (Prebronchodilator) values with 
greater than six hours withhold of bronchodilators. ‡Maximal (Postbronchodilator) values after 
six to eight puffs of albuterol. Maximal lung function for 25 healthy patients were not available.  
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Table 3-2 Major structural and functional imaging-based variables in four imaging-based clusters 
and heathy patients. 

Variable Region 
Wilk’s 
λ value 

Cluster 1 
(N = 96) 

Cluster 2 
(N = 45) 

Cluster 3 
(N = 88 ) 

Cluster 4 
(N = 55) 

P value 
Healthy 
patients 

(N =130) 

fSAD% Total 0.28 
4.6 

(5.4) 
8.4 

(8.2) 
12.3 
(6.9) 

34.9 
(7.9) 

<0.0001 
4.4 

(5.2) 

Jacobian Total 0.145 
2.09 

(0.266) 
1.496 

(0.218) 
1.671 

(0.168) 
1.353 

(0.136) 
<0.0001 

2.082 
(0.41) 

βtissue Total 0.107 
0.127 
(0.02) 

0.162 
(0.031) 

0.117 
(0.017) 

0.095 
(0.019) 

<0.0001 
0.119 

(0.027) 

WT* sRML 0.086 
0.599 

(0.036) 
0.615 

(0.047) 
0.557 

(0.035) 
0.563 

(0.043) 
<0.0001 

0.588 
(0.047) 

ADI RUL 0.072 
0.406 

(0.078) 
0.314 

(0.101) 
0.309 

(0.079) 
0.22 

(0.074) 
<0.0001 

0.35 
(0.093) 

Dh* sLLL 0.064 
0.349 

(0.034) 
0.322 

(0.048) 
0.307 

(0.036) 
0.289 
(0.04) 

<0.0005 
0.339 

(0.041) 

Emph% Total 0.058 
2.8 
(3) 

2.4 
(3) 

4.2 
(4.5) 

13.5 
(8.7) 

<0.0001 
2.8 

(3.8) 

ADI Total 0.054 
0.467 

(0.066) 
0.332 

(0.086) 
0.378 
(0.07) 

0.269 
(0.073) 

<0.0001 
0.429 

(0.101) 

∆Vair
F LLL 0.051 

0.245 
(0.031) 

0.207 
(0.062) 

0.254 
(0.041) 

0.273 
(0.045) 

<0.0001 
0.263 

(0.037) 

Cr LMB 0.049 
0.976 

(0.009) 
0.965 

(0.016) 
0.973 

(0.012) 
0.962 

(0.015) 
<0.0001 

0.977 
(0.011) 

 

Values expressed as mean (SD). The major imaging-based variables were selected by Wilk’s λ 
value of a stepwise forward variable selection method. Analysis of variance (ANOVA) tests were 
performed to attain P values. Full names of each variable or region were described in 
Abbreviations used.  
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Table 3-3 Demography, baseline (Pre-bronchodilator) and maximal (Post-bronchodilator) PFTs, 
in four imaging-based clusters. 

 Cluster 1 Cluster 2 Cluster 3 Cluster 4 P value 

Demography 

 N = 96 N = 45 N = 88 N = 55  

GOLD (%) 
(0/1/2/3/4) 

68/22/10/0
/0 

47/11/33/9/
0 

27/15/51/7
/0 

4/2/40/47/
7 

< 0.0001 

Strata (%) 
(2/3/4) 

68/32/0 51/40/9 27/66/7 4/44/53 < 0.0001 

Gender (Female %) 44 49 44 31 0.26 

Race 
(White/Black/Others) 

60/32/7 36/58/7 72/26/2 80/15/5 0.0001 

Marital Status (%) 
22/25/8 
/2/42/0 

39/16/9 
/7/25/0 

15/40/11 
/6/27/1 

15/42/7 
/0/35/2 

0.0065 

Age (yrs.) 
54.44 
(8.01) 

56.76 
(8.51) 

61.01 
(8.24) 

64.47 
(8.14) 

< 0.0001 

BMI (kg/m2) 
27.63 
(4.7) 

31.1 
(5.04) 

25.58 
(4.76) 

23.65 
(4.26) 

< 0.0001 

BODE index 
0.48 
(0.9) 

1.4 
(1.9) 

0.98 
(1.1) 

2.94 
(1.7) 

< 0.0001 

PFT Baseline lung function † 

 N = 96 N = 45 N = 88 N = 55  

FEV1 % predicted 
0.91 

(0.17) 
0.73 

(0.22) 
0.68 
(0.2) 

0.42 
(0.17) 

< 0.0001 

FVC % predicted 
1.01 

(0.15) 
0.86 

(0.17) 
0.86 

(0.18) 
0.74 

(0.16) 
< 0.0001 

FEV1/FVC 
0.71 

(0.09) 
0.66 

(0.14) 
0.61 
(0.1) 

0.43 
(0.11) 

< 0.0001 

PFT Maximal lung function ‡ 

 N = 96 N = 45 N = 88 N = 55  

FEV1 % predicted 
0.97 

(0.16) 
0.8 

(0.2) 
0.76 

(0.18) 
0.49 

(0.17) 
< 0.0001 

FVC % predicted 
1.04 

(0.15) 
0.92 

(0.16) 
0.93 

(0.17) 
0.85 

(0.16) 
< 0.0001 

FEV1/FVC 
0.74 

(0.09) 
0.68 

(0.13) 
0.63 

(0.11) 
0.44 

(0.12) 
< 0.0001 

Data presented as number (%) or mean (SD). ANOVA and chi-square tests were performed for 
continuous and categorical variables, respectively. † Pre-bronchodilator values. ‡ Post-
bronchodilator values after six to eight puffs of albuterol. Full names of each variable were 
described in Abbreviations used. BODE indexes for 8 patients were not available. Marital status: 
1) Married; 2) Living common law; 3) Widowed; 4) Separated; 5) Divorced; 6) Single. 
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Table 3-4 Associations with symptoms and disease histories. 

 Cluster 1 Cluster 2 Cluster 3 Cluster 4 P value 

Symptoms and disease History 

 N = 96 N = 45 N = 88 N = 55  

History of 
pulmonary/vascular 

condition (%) 
19 13 24 23 0.53 

Smoking pack-years at 
baseline 

41.79  
(22.05) 

42.89  
(18.7) 

47.06 
(19.36) 

54.95 
(21.03) 

0.0016 

Chronic Bronchitis (%) 16 20 20 39 0.016 

Emphysema (%) 17 20 25 55 < 0.0001 

COPD diagnosed at 
baseline (%) 

29 51 58 83 < 0.0001 

Chronic bronchitis 
diagnosed at baseline 

(%) 
21 33 28 41 0.079 

Asthma (%) 20 36 22 21 0.19 

Wheezing and whistling 
in chest (%) 

60 62 66 89 0.002 

Wheezing age (yrs.) (%) 60 86 84 92 0.0003 

Sleep Apnea at baseline 
(%) 

6 21 7 6 0.02 

Shortness of breath 

during sleep (%) 
18 29 14 29 0.06 

Coronary artery disease 2 4 9 6 0.19 

Diabetes (%) 6 18 9 9 0.2 

Heart attack (%) 3 4 6 2 0.65 

Congestive heart failure 
(%) 

3 0 1 0 0.33 

Genetic effect † 

Father had COPD (%) 19 13 23 22 0.61 

Mother had COPD (%) 17 13 19 9 0.39 
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Table 3-5 Characteristics of biomarkers in four imaging-based clusters. 

 Cluster 1 Cluster 2 Cluster 3 Cluster 4 P value 

Blood/serum biomarkers 

 N = 92 N = 45 N = 87 N = 55  

RBC distribution 
width (%) 

14.25 
(1.17) 

14.04 
(0.87) 

13.63 
(0.84) 

14.13 
(1.19) 

0.0016 

Total WBC count 
(N/µl) 

7153.15 
(2290.62) 

7352.89 
(2527.31) 

7109.77 
(1954.51) 

7073.09 
(2122.85) 

0.924 

Neutrophils% (%) 
58.06 
(9.52) 

58.24 
(11.78) 

58.06 
(9.65) 

61.14 
(10.22) 

0.26 

Lymphocyte% (%) 
31.35 
(8.09) 

31.39 
(10.45) 

30.81 
(8.58) 

27.74 
(9.53) 

0.088 

Monocyte% (%) 
7.3 

(2.5) 
7.46 

(2.12) 
7.67 

(2.18) 
7.85 
(2.2) 

0.512 

Eosinophils% (%) 
2.63 

(1.64) 
2.29 

(1.74) 
2.72 

(1.75) 
2.61 
(1.9) 

0.6 

Basophils% (%) 
0.71 

(0.61) 
0.52 

(0.36) 
0.62 

(0.54) 
0.68 

(0.64) 
0.278 

Baseline CAT score † 

 
13.17  
(7.95) 

16.45  
(9.54) 

13.78 
 (7.86) 

20.06  
(7.86) 

< 0.0001 

Exacerbations 

Severe*  
0.2  

(0.6) 
0.44  

(1.62) 
0.31  

(0.82) 
1.25  

(2.27) 
< 0.0001 

Total** 
0.49  

(1.19) 
1.09  

(3.39) 
0.92  

(2.14) 
2.09  

(2.91) 
< 0.0001 

Total at baseline*** 
0.25  

(0.68) 
0.58  

(1.39) 
0.22  

(0.63) 
0.62  

(0.99) 
0.011 

Activity limitation 

Six minute walk 
distance (m) 

445.66 
(91.31) 

386.64 
(136.27) 

420.38 
(71.19) 

385.16 
(94.09) 

0.0003 

Oxygen desaturation 
with six minute 

walk (%)  
14 36 14 41 < 0.0001 

Biomarkers data for 5 patients were not available. Kruskal-Wallis and chi-square tests were 
performed for continuous and categorical variables, respectively. † CAT score range from 0 to 
40, with higher scores indicating greater severity symptoms. * Total count of exacerbations 
requiring ED visit or hospitalization since entering the study. **Total count of exacerbations since 
entering the study. ***Total Exacerbations for baseline. 
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Table 3-6 Upper/lower zone Emph% and fSAD%. 

Variable 
Cluster 1 
(N = 96) 

Cluster 2 
(N = 45) 

Cluster 3 
(N = 88 ) 

Cluster 4 
(N = 55) 

P value 

fSAD  
(U/L ratio) 

9.54 
(14.04) 

5.1 
(6.06) 

5.92 
(6.64) 

1.63 
(1.42) 

< 0.0001 

Emph  
(U/L ratio) 

2.14 
(3.15) 

2.21 
(2.36) 

2.52 
(3.42) 

1.6 
(1.85) 

0.389 

fSAD/Emph 
(% Total) 

1.75 
(1.67) 

5.91 
(7.44) 

5.15 
(4.16) 

4.60 
(4.72) 

< 0.0001 

 

  
(a) (b) 

Figure 3-1 (a) Percentage of emphysema (Emph%) for four clusters and the healthy control group 
(green). † P > 0.05 between clusters 1, 2, 3 and the healthy group. P < 0.05 between Cluster 4 and 
other groups for all pairwise comparisons (b) Percentage of small airway disease (fSAD%) for 
four clusters and the healthy control group (green). ‡ P < 0.05 for comparisons between four 
clusters 2, 3, 4 and the healthy group for all pairwise comparison. P > 0.05 for between Cluster 1 
and the healthy group. 
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Figure 3-2 A summary of imaging and clinical variables for four clusters. 
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Figure 3-3 Predicting imaged-based cluster using only 7 important variables with a classification 
tree (“simple” imaging-based clustering). Variables are Jacobian (Total), Dh* (sLLL), Dh* 
(sRLL), WT* (sRUL), WT* (sRML), βtissue (LLL) and fSAD% (Total) with 89% accuracy 
compared with “original” imaging-based clusters using 69 variables. 
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Figure 3-4 PRM based on GOLD stages and imaging-based clusters.  

 

 

 

 

 

 

 
Figure 3-5 FEV1 and FEV1/FVC based on GOLD stages and imaging-based clusters. Dashed 

lines represent fixed threshold criteria (FEV1 =0.8, FEV1/FVC = 0.7) used to distinguish 
possible PRISm subjects. 
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Figure 3-6  Parametric response map (PRM) for four subjects. The joint histogram based on  
distribution of voxels intensities at expiration and inspiration levels for stratum 1 (upper left), 2 
(upper right), 3 (lower left) and 4 (lower right). Stratum 1 and 4 show normal lung (healthy) 
and severe COPD respectiveley, while stratum 2 and 3 states the mild to moderate COPD. The 
vertical yellow line shows the airtraping criteria (voxels less than -856 HU at expiration level) 
and horizontal line shows the emphysema cirteria ( voxels less than -950 HU at inspiration 
level).  
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3.6 Supplementary Results 

3.6.1 Principal Components Analysis 

With 69 imaging variables, the data may be too large to study and interpret 

properly. Also there would be many pairwise correlation between variables. A principal 

component analysis (PCA) was performed to derive linearly uncorrelated variables 

(principal components) from a set of correlated variables (50, 69, 70) while capturing as 

much information in the original variables as possible. First, three methods 

(Kaiser/Harris, Cattel Scree Test and Parallel Analysis (71)) were performed to retain an 

optimal number of principal components (Figure 3-7). The lower dimension principal 

components were then used to feed clustering analysis. 

As such, the optimal number of principal components was determined as seven 

explaining 64% of the variation in the original data (Table 3-7). Seven components 

loadings (the correlations of the imaging variables with the principal components) were 

tabulated in Table 3-7.The first component was related to βtissue, fSAD% and Emph%; 

The second component was related to  Jacobian and ADI; The third component was 

related WT*, shape at TLC and Cr; The fourth component was related U/(M+L)|v, ∆Vair
F 

and θ (RMB); The fifth component was related Dh* and ∆Vair
F (RML); The sixth 

component was related Dh* and WT* (RMB); The seventh component was related to Cr.  
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Table 3-7 Standardized loadings of seven principal components based upon correlation matrix. 
The variables with the significant correlation in each component are indicated by an asterisk. Full 
names of each variable were described in Abbreviations used section of the main text. These 69 
variables consist of 32 local (θ in two regions, Cr, WT* and Dh* in ten regions), 30 lobar (∆Vair

F, 
fSAD%, Emph%, βtissue%, Jacobian and ADI in five lobes) and 7 global (lung shape, U/(M+L)|v, 
fSAD%, Emph%, βtissue% , Jacobian and ADI) variables. 

 
Principal components 

1 2 3 4 5 6 7 

Proportion of variation 25 11 8.8 6.8 5.3 3.5 3 

Cumulative  
variation 

25 37 45.8 52.5 57.8 61.3 64.3 

  

Variable Region Standardized loadings based upon correlation matrix 

θ 
Trachea 0.14 0.3 -0.04 0.38 -0.29 -0.09 -0.11 

RMB -0.32 -0.28 0.17 -0.13 -0.15 -0.28 -0.1 

Cr 

Trachea 0.21 -0.17 0.22 -0.25 0.35 0.13 0.35 
RMB 0.35 -0.31 0.15 -0.42 0.22 0.21 0.31 
LMB 0.4 -0.21 0.19 -0.23 0.02 0.29 0.28 

TriLLB 0.12 -0.18 0.06 -0.12 -0.13 0.08 0.42 
BronInt 0.39 -0.06 0.01 -0.07 -0.04 0.47 0.47 
sLUL 0.16 -0.13 -0.02 -0.15 -0.12 0.13 0.14 
sLLL 0.01 -0.21 0.02 -0.14 -0.27 0.34 0.1 

sRUL 0.07 -0.08 0 -0.04 -0.02 0.16 0.33 
sRML 0.06 -0.03 -0.03 0.09 -0.11 0.08 0.01 
sRLL 0 -0.19 0.05 -0.05 -0.06 0.09 0.2 

WT* 

Trachea 0.06 -0.03 0.1 0.46 -0.29 0.22 -0.17 
RMB 0.28 -0.05 0.24 0 0.23 0.18 -0.33 
LMB 0.2 -0.12 0.36 0.13 0.27 0.3 -0.32 

TriLLB 0.31 -0.04 0.34 0.55 -0.28 0.12 0.06 
BronInt 0.21 -0.02 0.25 0.46 -0.15 0.41 0.1 
sLUL 0.41 0.03 0.35 0.59 -0.11 -0.09 0.11 
sLLL 0.39 0 0.32 0.6 -0.31 0.05 0.12 
sRUL 0.3 0.14 0.26 0.64 -0.22 0.07 0.11 

sRML 0.38 0.09 0.3 0.56 -0.15 -0.07 -0.02 
sRLL 0.39 0 0.36 0.57 -0.26 -0.06 0.09 

Dh* 

Trachea 0.19 -0.22 0.52 -0.14 0.44 0.21 -0.1 
RMB 0.44 -0.11 0.46 -0.09 0.45 0.3 -0.13 
LMB 0.37 -0.2 0.45 0 0.36 0.32 -0.27 

TriLLB 0.57 -0.04 0.52 -0.05 0.31 -0.21 0.01 
BronInt 0.47 -0.08 0.38 0.04 0.21 0.43 -0.02 
sLUL 0.53 -0.09 0.39 0.18 0.36 -0.33 0.03 
sLLL 0.57 -0.1 0.51 0.09 0.21 -0.31 0.08 
sRUL 0.51 -0.05 0.4 0.19 0.35 -0.24 0.07 
sRML 0.49 -0.04 0.4 0.12 0.29 -0.28 -0.11 
sRLL 0.56 -0.09 0.5 0.08 0.22 -0.34 0.02 

Shape at TLC -0.14 -0.26 0.15 -0.31 0.27 -0.09 -0.05 

U/(M+L)|v 0.06 0.45 -0.53 0.3 0.54 0.09 -0.03 

∆Vair
F 

LUL 0.16 0.36 -0.5 0.31 0.51 0.04 0.03 
LLL -0.22 -0.38 0.48 -0.28 -0.47 -0.04 0.13 
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Table 3-7-continued.  

 
RUL 0.05 0.34 -0.54 0.3 0.48 0.19 0.01 
RML 0.14 0.09 -0.19 0.15 -0.11 0.12 -0.19 

RLL -0.03 -0.29 0.56 -0.33 -0.38 -0.23 -0.07 

βtissue 

Total 0.57 0.75 -0.03 -0.06 -0.06 -0.07 0.1 
LUL 0.53 0.73 0 -0.04 -0.1 -0.05 0.08 
LLL 0.5 0.76 -0.08 -0.04 0.08 -0.17 0.16 
RUL 0.55 0.66 0.05 -0.04 -0.22 0.06 -0.06 
RML 0.51 0.66 0.03 -0.09 0.03 -0.13 0.15 
RLL 0.54 0.75 -0.12 -0.03 0.05 -0.09 0.15 

Emph% 

Total -0.68 -0.34 -0.08 0.32 0.25 -0.15 0.31 
LUL -0.6 -0.35 -0.09 0.29 0.24 -0.15 0.3 
LLL -0.63 -0.34 0 0.29 0.09 0.03 0.09 
RUL -0.52 -0.26 -0.1 0.23 0.31 -0.25 0.4 
RML -0.57 -0.24 -0.16 0.33 0.07 -0.02 0.23 
RLL -0.69 -0.3 0 0.3 0.12 -0.07 0.17 

fSAD% 

Total -0.9 -0.13 0.11 0.2 0.09 0.04 -0.09 
LUL -0.88 -0.16 0.13 0.11 0.03 0.02 -0.09 
LLL -0.78 -0.11 0.08 0.29 0.08 0.15 -0.14 
RUL -0.84 -0.16 0.12 0.1 0.11 -0.08 0 
RML -0.81 -0.12 0.11 0.12 -0.03 0.05 -0.15 
RLL -0.81 -0.09 0.11 0.24 0.11 0.1 -0.07 

Jacobian 

Total 0.76 -0.52 -0.27 0 -0.07 -0.01 0.01 
LUL 0.73 -0.41 -0.34 0.09 0 0.02 0.04 
LLL 0.7 -0.58 -0.14 -0.1 -0.1 -0.09 0.04 
RUL 0.73 -0.42 -0.36 0.09 -0.02 0.08 0 
RML 0.67 -0.46 -0.3 0.07 -0.08 0.08 -0.03 
RLL 0.71 -0.6 -0.14 -0.09 -0.1 -0.09 -0.03 

ADI 

Total 0.65 -0.53 -0.41 0.13 0 -0.1 -0.11 
LUL 0.62 -0.37 -0.49 0.25 0.05 -0.02 -0.06 
LLL 0.53 -0.54 -0.31 0.03 -0.01 -0.2 -0.03 
RUL 0.6 -0.33 -0.5 0.25 0.08 0.07 -0.08 
RML 0.49 -0.57 -0.29 0.04 -0.1 -0.02 -0.14 
RLL 0.55 -0.52 -0.26 0.04 0.01 -0.22 -0.15 
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Figure 3-7 A scree plot: eigenvalues (magnitude of variances) according to the number of 
principal components for determining the optimal number of principal components. 

3.6.2 Cluster Analysis  

Three different clustering methods, hierarchical, K-means and Gaussian finite 

mixture model-based, were used in order to find the best clustering method with respect 

to internal properties of clusters (Fig. 3-5a). For a given complex data set such as imaging 

variables, choosing the appropriate clustering method and then finding the optimal 

number of clusters are important. We used the package clValid in R software to assess 

internal validation measures of clustering. The internal measures included in clValid are 

Connectivity, Average Silhouette width and Dunn index.  

Connectivity indicates the degree of connectedness of the clusters, as determined 

by k-nearest neighbors. Connectedness relates to what extent items are placed in the same 

cluster as their nearest neighbors. The connectivity has a value between 0 and infinity and 

should be minimized. 

The Dunn index is the ratio between the smallest distance between observations 

not in the same cluster to the largest intra-cluster distance. It has a value between 0 and 
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infinity and should be maximized. Silhouette width corresponds to the degree of 

confidence in particular clustering assignment. Smaller connectivity and larger Silhouette 

width and Dunn index indicate the better quality of clustering. Connectivity criteria 

suggested K-means and hierarchical methods are good choices for the current imaging 

data based (Figure 3-8a). 

To find the optimal number of clusters, a cluster stability analysis was performed 

with a non-parametric bootstrap analysis, based on resampling from the raw imaging data 

(72) for different number of clusters and then the mean of Jaccard similarity coefficients 

was calculated to compare the cluster patterns derived from the bootstrapped datasets 

with the original clusters. 

K-means clustering outperformed the Hierarchical clustering with more stable 

results (Figure 3-8b). K-means method with 4 clusters reached and remained in the more 

stable region (E > 0.85). A package “NbClust” in software R (73) was used to perform 

stability analysis.  

We plotted clustering results on two projected dimensional coordinates using 

multi-dimensional scaling technique (74) to visualize the clustering results (Figure 3-8c 

and d). K-means clustering with could achieve more clear separation of the cluster 

compared to Hierarchical clustering (clusters 1, 2 and 3 have more overlap). 
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a. Internal property b. Clustering stability 

 
c. K-means clustering d. Hierarchical clustering 

Figure 3-8 Clustering analysis, a: Internal property in different clustering methods; b: Clustering 
stability analysis between K-means and Hierarchical clustering with different number of clusters; 
c: Clustering membership of K-means clustering on 2-D projected coordinates; d: Clustering 
membership of Hierarchical clustering on 2-D projected coordinates. 
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CHAPTER 4: IMAGING-BASED CLUSTERS IN FORMER SMOKERS OF THE COPD 

COHORT ASSOCIATE WITH CLINICAL CHARACTERISTICS IN SPIROMICS 

4.1 Introduction  

Chronic obstructive pulmonary disease (COPD) is the third leading cause of death 

in the United States (75), being identified by the airflow limitation and/or obstruction. 

The severity of COPD is assessed with strata ranging from 1-4, determined by the ratio of 

forced expiratory volume in 1 s (FEV1)/forced vital capacity (FVC) and FEV1% predicted 

values at post bronchodilator (76). The pulmonary function test (PFT)-based FEV1 and 

FVC values are highly recommended to assess the global alteration of lung, but it was 

found to be poorly correlated with symptoms (77), and they are hard to explain structural 

and functional alterations at multiscale levels, considering the heterogeneous nature of 

COPD phenotypes. A multicenter study of COPD, i.e., Subpopulations and Intermediate 

Outcomes in COPD Study (SPIROMICS) (76) acquired quantitative computed 

tomography (QCT) scans at total lung capacity (TLC) and residual volume (RV). This is 

an integral part of the multicenter study to find structural and functional phenotypes. A 

recent advance of quantitative medical imaging and data analysis techniques allows for 

deriving QCT imaging-based metrics, principal components, and statistically stable 

clusters. For instance, using only QCT imaging-based variables, Choi et al. (78) derived 

clinically meaningful asthmatic sub-groups, potentially useful in developing clusters-

specific treatments. In this study, we hypothesize that QCT-based imaging metrics along 

with statistical clustering method are able to identify unique COPD sub-groups being 

clinically meaningful. 
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With the aid of machine learning techniques, QCT imaging metrics have been 

used to group COPD patients efficiently. As an example, Bodduluri et al. (79) have 

employed image registration-based metrics to discriminate COPD patients from non-

COPD patients. The study demonstrated the potential of registration-based variables to 

characterize COPD phenotypes, but this study was limited in supervised learning 

technique and parenchymal metrics excluding segmental airway features. In regards to 

unsupervised learning methods, there were several efforts to identify COPD sub-groups, 

but they employed either clinical data-only or a mix of clinical and CT data together (53, 

80, 81). In fact, analyzing a full set of clinical and CT data for determining cluster 

membership may be expensive and difficult under different clinical settings. Unlike these 

studies based on supervised learning, using a different multicenter study of SARP, Choi 

et al. (78) performed a clustering analysis which is used to identify clinically meaningful 

asthmatic groups. Their approach was unique because they accounted for inter-site and 

inter-subject variations that could be created by multicenter population-based studies. In 

this study, we use the same approach introduced by Choi et al. (4). We added several 

imaging metrics on the existing metrics to account for tissue alterations and 

emphysematous lung due to COPD. An expanded set of QCT imaging-based metrics was 

found to be sensitive when identifying asthmatics with irreversible flow limitation from 

COPD patients (9).  

In the current COPD clustering, we employed segmental variables of bifurcation 

angle, airway circularity, wall thickness, and hydraulic diameter at ten local regions. We 

also used registration-derived variables such as air-volume change, Jacobian and 

anisotropic deformation index. Unlike the asthma, emphysema is an important alteration 



www.manaraa.com

 
 

68 
 

so we included this variable, and air-trapping variable was replaced with functional small 

airway disease to subtract emphysematous portion (82). The derived clusters were then 

evaluated in association with severity, gender and body mass index (BMI), several 

biomarkers including neutrophils counts, leukocyte (WBC) count and matrix 

metalloproteinase (MMP-3). 

4.2 Methods 

4.2.1 Human Subject Data and QCT Imaging 

Among 2,981 participants enrolled in SPIROMICS, we analyzed a total of 758 

SPIROMICS subjects containing an extensive set of biomarkers. In this study, we 

excluded never (stratum 1) and current smokers, so that a total of 406 formers smokers 

remained. This is because we found that a mix of former and current smokers could not 

form stable clusters, due to a confounding effect of smoking status. Note that Jaccard 

index for mixing both former and current smokers could not reach beyond 70%. We 

previously presented results with only current smokers, being different from this study 

(83). Pulmonary function tests (PFT) were performed for all subjects at both pre- and 

post- bronchodilators. Table 1 shows the demographic and PFT measures based on each 

stratum. Stratum 2 was grouped with FEV1/FVC>0.7, and both stratum 3 and 4 were 

grouped with FEV1/FVC<0.7, and with FEV1 > 50% in stratum 3 and with FEV1 < 50% 

in stratum 4.  

Two QCT scans at total lung capacity (TLC) and residual volume (RV) were 

acquired by multiple imaging centers, i.e., parts of NIH-supported SPIROMICS, so 

imaging protocols were approved by respective institute research boards (IRB). All QCT 

scans were obtained with post-bronchodilator to relax temporal airway luminal change. 
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They were segmented with an automated commercial airway/lung segmentation software 

(Apollo), and registered with a mass-preserving imaging registration technique (84, 85). 

4.2.2 Multiscale Imaging Variables for Clustering Analysis 

A total of 75 multiscale imaging-based variables were extracted to derive 

principal components. The segmental variables included bifurcation angle (θ), airway 

circularity (Cr), wall thickness (WT) and hydraulic diameter (Dh), where each variable 

indicated alteration of skeletal structure, alteration of airway shape, wall thickening and 

luminal narrowing, respectively. The dimensions of WT and Dh were normalized by 

predicted trachea WT and Dh from healthy subjects (78), denoted by WT* and Dh*. The 

normalization method successfully eliminates an inter-subject variability due to age, 

gender, and height. The four segmental variables were extracted from ten local regions to 

reflect the regional characteristics. A detailed derivation of structural variable could be 

found in the reference (86).  

We further derived both strain-based and density-based functional metrics with 

the aid of image registration technique employing two QCT images at TLC and RV. The 

strain-based variables included fractional air volume change (∆Vair
F), Jacobian, and 

anisotropic deformation index (ADI), estimating regional contribution of ventilation, 

volume change, and the degree of preferential deformation, respectively. See reference 

(87) for more details. Next, the density-based functional metrics included functional 

small airway disease (fSAD%) and emphysema (Emph%) to characterize small airway 

narrowing and emphysematous diseases, respectively. This approach was devised to 

dissociate emphysematous region from air-trapping region, being previously utilized by 

Galban et al. (82). In order to eliminate inter-site variation, we employed the fraction-
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based fSAD% and Emph% using 90% and 98.5% air-fraction as the threshold, instead of 

using the density threshold of -856 and -950, respectively. We further added two more 

imaging-based metrics of tissue fraction at TLC and RV (βtissue
TLC and βtissue

RV) to 

evaluate tissue alteration at parenchymal levels. The tissue fractions indicated the portion 

of tissue volume in each voxel. 

In addition, we included global imaging metrics such as apical-basal distance over 

ventral-dorsal distance at TLC (lung shape), the ratio of air-volume changes in upper 

lobes to those in middle and lower lobes between TLC and RV (U/(M+L)|v), fSAD%, 

Emph%, βtissue
TLC and βtissue

RV, Jacobian and ADI in a whole lung. Thus we obtained 32 

local structural and 35 lobar and 8 global variables. 

4.2.3 Statistical and Clustering Analysis 

A principal component analysis was performed to derive linearly uncorrelated 

variables, so-called principal components (PC). To obtain an optimal number of PC, a 

parallel analysis was adopted. Using the PCs, we employed K-means (88) clustering 

method Kruskal-Wallis and chi-square tests were performed to compare differences of 

continuous and categorical (or dichotomous) variables, respectively. We performed 

association tests of imaging-based clusters with demographic and clinical variables to 

investigate the clinical relevance of current clusters.  

4.2.4 A Predictive Decision Tree Model  

Using 10 most important imaging variables, we performed a decision tree analysis to 

build a simple predictive model for cluster membership (Figure 2). The data set was 

divided into training and validation (test) set (80/20). The model comprising 10 
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discriminant variables was trained on the training set and achieved 0.78 accuracy on the 

validation set. Then to improve the accuracy and avoid overfitting, we performed 

Random Forests (RF) (89) algorithm with improved accuracy 0.9. The importance 

variables plot indicating how much helpful a particular predictor variable is in classifying 

the data is shown in Figure 3. The most important variables for classification were βtissue, 

RV (Total), Jacobian (Total), βtissue, TLC (Total), fSAD% (Total), ADI (Total), βtissue, RV 

(RUL), Dh* (RMB), Emph% (Total), Dh* (LMB), Shape (TLC).    

4.3 Results 

4.3.1 Four Clusters and Imaging-based Characteristics  

Cluster analysis resulted into four distinct clusters with the sizes of 100, 80, 141 

and 85, respectively. The major imaging-based variables are summarized in Table 2. The 

major variables which best describe the four clusters were selected with a stepwise 

forward variable selection technique using Wilk’s λ criterion (90). Ten major variables 

with higher Wilk’s λ values are presented describing structural and functional alterations 

associated with each cluster (Table 2). Figure 4-1 shows the percentages of emphysema 

and small airway disease (Emph% and fSAD%) for different clusters and the healthy 

group. A decision tree prediction model and variable importance plot are shown in 

Figures 4-2 and 4-3.  

4.3.2 Cluster Characteristics 

Cluster 1: 

Cluster 1 showed preserved pulmonary function (FEV1/FVC = 0.72) and was mostly 

populated in GOLD stages 0 and 1. This cluster had a relatively low Emph% and fSAD% 
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with structural and functional variables close to those of healthy controls. BODE index 

and exacerbation histories and WBC count of this cluster were relatively lower compared 

to other clusters. These characteristic along with CAT < 10 suggests it belongs to non-

symptomatic resistant smokers.     

Cluster 2: 

Cluster 2 with preserved pulmonary function (FEV/FVC = 071) and mostly populated 

with female showed the highest BMI and tissue fraction among clusters. This cluster with 

over-representation of women with the highest BMI might indicate a clinical and 

epidemiological importance. Its Emph% and fSAD% were close to those of Cluster 1. 

CAT score and exacerbation of this cluster were higher than those of Cluster 1 while it 

had the highest oxygen desaturation with six minute walk (%) among all clusters. Cluster 

2 can be categorized as a female-dominant with obesity and activity limitation 

Cluster 3: 

Cluster 3 with decreased FEV1/FVC compared to clusters 1 and 2 and mostly populated 

in GOLD stage 2 and 3 showed significant increase in BODE index, Emph% and fSAD% 

compared to those of clusters 1 and 2. This cluster showing decrease in structural 

variables (Dh*) can be categorized as an intermediate cluster toward progression to more 

sever stages of COPD.   

Cluster 4: 

This cluster showed the highest Emph%, fSAD%, BODE index, WBC count and CAT 

score along with the lowest FEV1/FVC among all clusters. These characteristic with 
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significant decreased in structural variables indicated that it belongs to severe 

symptomatic COPD subjects. 

4.3.3 Associations with Demography and PFT 

Association of clusters with demography and PFTs are tabulated in Table 3. 

Cluster 1 was mostly populated with GOLD 0, 1 and 2 (strata 2 and 3), low BODE index 

while Cluster 4 mostly included subjects with GOLD 3 and 4 (stratum 4) with the highest 

and lowest BODE index and BMI across four clusters, respectively.  

Correlation of clusters with both pre-bronchodilator and post-bronchodilation PFT 

values are tabulated in Table 3. FEV1/FVC showed a consistent, decreasing pattern from 

Cluster 1 to Cluster 4. Cluster 4 shows the lowest of FEV1/FVC for both pre and post- 

bronchodilation PFT across clusters while Cluster 1 with normal airway structures values 

close the normal subjects (the cut off value of 0.7).  

4.3.4 Associations with Symptoms, Disease and Exacerbation Histories 

Symptoms and disease histories are summarized in Table 4. The prevalence of 

symptoms in Cluster 4 in more than other clusters. Cluster 4 showed the highest 

pulmonary/vascular condition, emphysema, chronic bronchitis across all clusters.  

Blood biomarkers, baseline COPD assessment test (CAT) score, exacerbation 

histories as well as activity limitation (6-minute walk) are tabulated in Table 5. Cluster 4 

showed the highest total white blood cell (WBC), CAT score with the lowest 6-minute 

walk distance. Cluster 1 is less likely symptomatic (CAT < 10) with the lowest 

exacerbation across all clusters. 
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The correlations between the clusters and a visual diagnostic assessment by a 

radiologist at University of Iowa are tabulated in Table 6. Cluster 4 is less likely related 

to interstitial lung disease (ILD) while there was not any significant clusters for lung 

nodule. 

4.4 Discussion 

In this present study, we applied an unsupervised clustering method with a set of 

unique and extensive imaging-derived variables (features) for COPD quantitative 

imaging analysis. These variables led to four homogenous clusters within a former COPD 

smoker population with distinct phenotypic characteristics and strong associations with 

clinically relevant COPD biomarkers. These clusters can give more information than the 

traditional PFT classification of COPD as it can link structural and functional variables at 

lobar and segmental levels helping to assess the COPD patients with new metrics as well 

as PFT criteria. Also since we included emphysema, fSAD as well as wall thickness and 

diameter of airway branches, our cluster analysis can be able to give a comprehensive 

picture of alteration in COPD population. 

These four clusters can be categorized as (1) relatively smoking-resistant subjects 

with preserved pulmonary function (FEV1/FVC > 0.7) (2) fSAD-dominant subjects with 

the highest obesity with more females (fSAD%/Emph% = 3.11 in the whole lung) (3) the 

individuals with increasing emphysema (fSAD%/Emph% = 2.2 in the whole lung) (4) 

severe emphysema and fSAD individuals with severe decrease in FEV1/FVC.  

This results suggesting that small airway disease precedes emphysematous alveoli 

destruction is consistent with MacNee et al. (91). Consistent decreasing pattern of Dh* 
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along with increasing fSAD clearly shows the effect of small airway on fSAD (non-

emphysematous air trapping) derived by parametric response map (PRM).   

Cluster 2 has the highest BMI and over-representation of women in fSAD-dominant 

group in of a clinical interest and is consistent as reported by Castaldi et al. (53). Also 

Cluster 2 showed more centrilobular emphysema (CLE) percentage than Cluster 1 while 

Cluster 4 with the most sever decrease in FEV1/FVC has the lowest CLE among clusters. 

Ostridge et al. (92) investigated the association between specific pulmonary matrix 

metalloproteinases (MMPs). MMPs are enzymes that can degrade the extracellular matrix 

and have been identified as potentially important in the progress of emphysema (92). 

Table 5 shows MMP-3 between clusters. In our study, Cluster 2 with highest CLE, low 

MMP-3 and more tissue fraction (βtissue) compared to other clusters suggests MMPs paly 

as an important role in the tissue destruction.  

Koo et al. (93) studied the white blood cell (WBC) count as a biomarker and their 

associations with the severity of the disease. WBC count in former smokers has an 

increasing pattern from cluster 1 to cluster 4 (Table 5) along with increasing CAT score 

and decreasing FEV1/FVC. In contrast, WBC did not show significant difference in our 

current smoker study due to confounding effect of smoking on the WBC (83). This 

indicates the WBC count can be considered as an important risk factor especially in 

former smokers. Also Cluster 2 with over-representation of women with the highest BMI 

and the lowest emphysema can a stand-alone phenotype. However it is important to 

assess the effect of field of view in CT measurement between men and women for 

assessing the cluster based on over-representation of women or men.  
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In conclusion, a clustering method in SPIROMICS former smokers can 

distinguish four homogenous clusters with strong correlations with biomarkers and 

clinical measures and might provide more information about the nature of COPD 

progression related to small airway disease and emphysema.   
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Table 4-1 Demography, baseline (Pre-bronchodilator) and maximal (Post-bronchodilator) 
pulmonary function tests for 105 Stratum 1 (healthy), 119 Stratum 2, 184 Stratum 3 and 103 
Stratum 4 subjects. 

 
Stratum 1 
(Healthy) 

Stratum 2 Stratum 3 Stratum 4 P value 

Demography 

 N = 69 N = 119 N = 184 N = 103  

Age, yrs 
58.6 

(10.5) 
65.1  
(7.5) 

69.1  
(6.4) 

65.2  
(7.5) 

< 0.0001 

BMI, kg/m2 
28.4  
(5.2) 

29.5  
(4.8) 

28.4  
(4.6) 

27.0  
(4.7) 

< 0.0001 

Gender, 
(Male/Female %) 

42/58 51.3/48.7 62.5/37.5 57.3/42.7 = 0.02 

Race, Caucasian/ 
African 

American/ Other 
(%) 

62.3/26.1/ 
11.6 

81.5/12.6/  
5.9 

88.0 /7.1/  
4.9 

85.4 /9.7/  
4.9 

< 0.0001 

Baseline lung function† 

 N = 69 N = 119 N = 184 N = 103  

FEV1 % predicted 
98  

(13) 
91  

(14) 
67  

(16) 
28 
 (8) 

< 0.0001 

FVC % predicted 
98  

(11) 
94  

(13) 
91  

(16) 
67  

(15) 
< 0.0001 

FEV1/FVC × 100 
78  
(6) 

74 
 (6) 

55  
(9) 

32  
(9) 

< 0.0001 

Maximal lung function‡ 

 N = 69 N = 119 N = 184 N = 103  

FEV1 % predicted 
102  
(12) 

97  
(14) 

76  
(15) 

34  
(10) 

< 0.0001 

FVC % predicted 
98  

(11) 
95  

(13) 
99  

(15) 
76  

(17) 
< 0.0001 

FEV1/FVC × 100 
81  
(6) 

78  
(5) 

57 
 (8) 

34  
(9) 

< 0.0001 

Values expressed as mean (SD) or number (%). Kruskal-Wallis and chi-square tests were 
performed for continuous and categorical variables. †Baseline (Pre-bronchodilator) values with 
greater than six hours withhold of bronchodilators. ‡Maximal (Post-bronchodilator) values after 
six to eight puffs of albuterol. 
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Table 4-2 Major structural and functional imaging-based variables in four imaging-based clusters 
and heathy patients. 

 

Significance*: significance between-group difference. Values expressed as mean (SD). The major 
imaging-based variables were selected by Wilk’s λ value of a stepwise forward variable selection 
method. Analysis of variance (ANOVA) tests were performed to attain P values. Full names of 
each variable or region were described in Abbreviations used. 

 
 

 

Variable Region 
Wilk’s 
λ value 

Cluster 1 
(N = 100) 

Cluster 2 
(N = 80) 

Cluster 3 
(N = 141 ) 

Cluster 4 
(N = 85) 

P value 
Healthy 
patients 
(N = 69) 

βtissue, RV Total 0.286 
0.24 

(0.041) 
0.245 

(0.041) 
0.172 

(0.026) 
0.11 

(0.02) 
<0.0001 

0.264 
(0.054) 

significance*   0,3,4 0,3,4 0,1,2,4 0,1,2,3  1,2,3,4 

Jacobian Total 0.145 
2.161 

(0.259) 
1.669 
(0.2) 

1.634 
(0.201) 

1.315 
(0.147) 

<0.0001 
2.107 

(0.378) 

Significance    2,3,4 0,1,4 0,1,4 0,1,2,3  2,3,4 

Emph% Total 0.116 
0.058 

(0.058) 
0.024 

(0.026) 
0.104 

(0.073) 
0.25 

(0.11) 
<0.0001 

0.024 
(0.028) 

Significance   0,2,3,4 1,3,4 0,1,2,4 0,1,2,3  1,3,4 

fSAD% Total 0.093 
0.087 

(0.065) 
0.075 

(0.055) 
0.235 

(0.086) 
0.368 

(0.074) 
<0.0001 

0.05 
(0.052) 

Significance   3,4 3,4 0,1,2,4 0,1,2,3  1,3,4 

βtissue, TLC Total 0.080 
0.109 

(0.015) 
0.142 

(0.019) 
0.103 

(0.014) 
0.081 

(0.014) 
<0.0001 

0.122 
(0.03) 

Significance   0,2,3,4 0,1,3,4 0,1,2,4 0,1,2,3  1,2,3,4 

Dh* RMB 0.070 
0.863 

(0.064) 
0.806 

(0.074) 
0.776 
(0.09) 

0.759 
(0.074) 

<0.0005 
0.838 

(0.081) 

Significance   2,3,4 3,4 0,1,2 0,1,2  3,4 

ADI Total 0.063 
0.511 

(0.059) 
0.37 

(0.08) 
0.388 

(0.075) 
0.261 

(0.082) 
<0.0001 

0.454 
(0.096) 

Significance   0,2,3,4 0,1,4 0,1,4 0,1,2,3  1,2,3,4 

ShapeTLC - 0.059 
1.352 

(0.158) 
1.345 

(0.165) 
1.293 

(0.154) 
1.365 
(0.14) 

<0.0001 
1.364 

(0.191) 

Significance   3 3 0,1,4 3  3 

βtissue, RV RUL 0.056 
0.222 

(0.044) 
0.229 

(0.046) 
0.166 

(0.074) 
0.1 

(0.03) 
<0.0001 

0.242 
(0.057) 

Significance   3,4 3,4 0,1,2,4 0,1,2,3  3,4 

Dh* LMB 0.054 
0.742 

(0.061) 
0.684 

(0.071) 
0.677 

(0.071) 
0.678 

(0.059) 
<0.0001 

0.695 
(0.068) 

Significance   0,2,3,4 1 1 1  1 
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Table 4-3 Demography, baseline (Pre-bronchodilator) and maximal (Post-bronchodilator) PFTs, 
in four imaging-based clusters. 

 Cluster 1 Cluster 2 Cluster 3 Cluster 4 P value 

Demography 

 N = 100 N = 80 N = 141 N = 85  

GOLD (%) 
(0/1/2/3/4) 

62/23/14/1/
0 

57/20/20/2/
0 

6/24/51/1
6/3 

2/0/12/46
/40 

<0.0001 

Strata (%) 
(2/3/4) 

62/37/1 57/40/2 6/74/19 2/12/86 <0.0001 

Gender (Female %) 32 64 34 41 0.00015 

Race 
(White/Black/Other

s) 
88/6/6 75/20/5 91/4/5 84/12/5 0.0088 

Age (yrs.) 
64.91 
(7.11) 

66.59 
(7.92) 

69.37 
(5.94) 

65.67 
(7.92) 

< 0.0001 

BMI (kg/m2) 
28.67 
(4.43) 

30.76 
(4.55) 

28.49 
(4.6) 

25.68 
(4.44) 

< 0.0001 

BODE index 
0.28 

(0.61) 
0.6 

(1.12) 
1.31 

(1.78) 
3.99 
(2) 

< 0.0001 

PFT Baseline lung function † 

 N = 100 N = 80 N = 141 N = 85  

FEV1 % predicted 
0.88 

(0.18) 
0.79 

(0.16) 
0.59 
(0.2) 

0.31 
(0.15) 

< 0.0001 

FVC % predicted 
0.97 

(0.14) 
0.88 

(0.14) 
0.85 

(0.18) 
0.71 

(0.19) 
< 0.0001 

FEV1/FVC 
0.68 
(0.1) 

0.68 
(0.09) 

0.51 
(0.11) 

0.32 
(0.1) 

< 0.0001 

PFT Maximal lung function ‡ 

 N = 100 N = 80 N = 141 N = 85  

FEV1 % predicted 
0.95 

(0.17) 
0.86 

(0.16) 
0.68 

(0.19) 
0.37 

(0.17) 
< 0.0001 

FVC % predicted 
1.01 

(0.14) 
0.91 

(0.14) 
0.94 

(0.17) 
0.8 

(0.2) 
< 0.0001 

FEV1/FVC 
0.72 
(0.1) 

0.71 
(0.09) 

0.53 
(0.11) 

0.34 
(0.12) 

< 0.0001 

Data presented as number (%) or mean (SD). ANOVA and chi-square tests were performed for 
continuous and categorical variables, respectively. † Pre-bronchodilator values. ‡ Post-
bronchodilator values after six to eight puffs of albuterol. Full names of each variable were 
described in Abbreviations used. BODE indexes for 24 subjects were not available. 
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Table 4-4 Associations with symptoms and disease histories. 

 Cluster 1 Cluster 2 Cluster 3 Cluster 4 P value 

Symptoms and disease History 

 N = 100 N = 80 N = 141 N = 85  

History of 
pulmonary/vascular 

condition (%) 
24 18 21 39 0.0056 

Smoking pack-
years at baseline 

48.09 
(22.27) 

48.21 
(25.3) 

57.64 
(27.4) 

54.44 
(22.9) 

0.001 

Chronic Bronchitis 
(%) 

10 18 19 31 0.005 

Emphysema (%) 28 24 45 76 < 0.0001 

COPD diagnosed at 
baseline (%) 

40 34 64 88 < 0.0001 

Chronic bronchitis 
diagnosed at 
baseline (%) 

11 5 16 19 0.061 

Asthma (%) 12 20 19 23 0.285 

Wheezing and 
whistling in chest 

(%) 
46 50 59 59 0.167 

Wheezing age (yrs.) 
(%) 

60 67 78 68 0.19 

Sleep Apnea at 
baseline (%) 

28 29 15 17 0.106 

Shortness of breath 

during sleep (%) 
6 17 7 17 0.012 

Coronary artery 

disease 
6 12 15 7 0.101 

Diabetes (%) 12 19 11 14 0.452 

Heart attack (%) 1 5 6 10 0.08 

Congestive heart 
failure (%) 

1 2 3 2 0.81 

Genetic effect † 

Father had COPD 
(%) 

15 14 22 33 0.006 

Mother had COPD 
(%) 

9 12 12 23 0.041 
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Table 4-5 Characteristics of biomarkers in four imaging-based clusters. 

 Cluster 1 Cluster 2 Cluster 3 Cluster 4 P value 

Blood/serum biomarkers 

 N = 100 N = 80 N = 141 N = 85  

RBC distribution 
width (%) 

13.69 
(1.49) 

13.66 
(1.62) 

13.77 
(1.54) 

13.78 
(1.57) 

0.953 

Total WBC count 
(N/µl) 

6203.8 
(1595.18) 

6773.08 
(1954.3) 

6907.27 
(1721.5) 

7330.24 
(2155.13) 

0.0005 

Neutrophils% (%) 
59.74 
(8.48) 

61.17 
(9.35) 

62.12 
(8.32) 

63.5 
(11.2) 

0.044 

Lymphocyte% (%) 
28.38 
(7.98) 

27.28 
(8.74) 

25.97 
(7.14) 

23.9 
(9.47) 

0.002 

Monocyte% (%) 
7.97 

(2.43) 
7.72 

(2.44) 
8.3 

(2.55) 
8.06 

(2.71) 
0.432 

Eosinophils% (%) 
3.29 

(2.12) 
3.18 

(1.98) 
2.85 

(1.62) 
2.64 

(1.73) 
0.071 

Basophils% (%) 
0.68 

(0.41) 
0.59 

(0.41) 
0.65 

(0.52) 
0.57 

(0.56) 
0.321 

Matrix 
metalloproteinase  

(MMP-3) 

10.17 
(8.1) 

8.41 
(4.65) 

11.07 
(6.12) 

12.43 
(10.57) 

0.0082 

Baseline CAT score † 

 
9.36 

(6.19) 
10.73 
(6.61) 

10.96 
(6.38) 

17.06 
(7.34) 

< 0.0001 

Exacerbations 

Severe*  
0.08 

(0.34) 
0.25 

(1.11) 
0.23 
(0.7) 

0.84 
(1.61) 

< 0.0001 

Total** 
0.44 

(0.96) 
0.81 

(1.78) 
0.94 

(1.52) 
2.56 

(3.09) 
< 0.0001 

Total at baseline*** 
0.16 

(0.44) 
0.32 

(0.87) 
0.21 

(0.53) 
0.66 

(0.92) 
< 0.0001 

Activity limitation 

6-minute walk 
distance (m) 

459.23 
(84.5) 

431.4 
(91.71) 

412.76 
(113.09) 

338.5 
(114.57) 

< 0.0001 

Oxygen 
desaturation with 
six minute walk 

(%)  

18 17 36 76 < 0.0001 

 

Kruskal-Wallis and chi-square tests were performed for continuous and categorical variables, 
respectively. † CAT score range from 0 to 40, with higher scores indicating greater severity 
symptoms. * Total count of exacerbations requiring ED visit or hospitalization since entering the 
study. **Total count of exacerbations since entering the study. ***Total Exacerbations for baseline. 
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Table 4-6  Associations with visual diagnostics (VD). 

 Cluster 1 Cluster 2 Cluster 3 Cluster 4 P value 

Visual Diagnosis by Radiologist (VD) 

 N = 55 N = 41 N = 76 N = 51  

Bronchiectasis  0.45 0.31 0.57 0.62 0.018 

Interstitial lung 
disease (ILD)  

0.25 0.34 0.30 0.1 0.030 

Lung nodule  0.65 0.68 0.73 0.61 0.476 

 N = 14 N = 14 N = 23 N = 5  

Ground glass 
opacities (GGO)  

0.93 1.0 0.95 0.6 0.023 

Reticular 
opacities  

0.93 0.93 1.0 0.8 0.309 

Honeycombing  0.57 0.29 0.65 0.4 0.163 

 

Table 4-7 Associations with emphysema subtypes. 

 Cluster 1 Cluster 2 Cluster 3 Cluster 4 P value 

Emphysema subtypes 

 N = 51 N = 31 N = 74 N = 49  

CLE  0.08 0.16 0.11 0.06 0.481 

PSE  0.098 0.13 0 0 0.002 

PLE  0 0 0 0 NS 

CLE + PSE  0.82 0.68 0.85 0.65 0.030 

CLE + PLE  0 0 0 0.1 < 0.0001  

PSE + PLE  0 0 0 0 NS 

CLE + PSE + 
PLE  

0 0 0.4 0.18 < 0.0001 
* CLE: Centrilobular; PSE: Paraseptal; PLE: Panlobular emphysema. Kruskal-Wallis and chi-
square tests were performed for continuous and categorical variables, respectively.  
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(a) (b) 

Figure 4-1 (a) Percentage of emphysema (Emph%) for four clusters and the healthy control 
group (green). † P > 0.05 between clusters 1, 2, 3 and the healthy group. P < 0.05 between 
Cluster 4 and other groups for all pairwise comparisons (b) Percentage of small airway disease 
(fSAD%) for four clusters and the healthy control group (green). ‡ P < 0.05 for comparisons 
between four clusters 2, 3, 4 (red) and the healthy group for all pairwise comparison. P > 0.05 
for between Cluster 1 and the healthy group. 
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Figure 4-2 A predictive decision tree model based on most important imaging variables. 

 

 
Figure 4-3  Importance plot for the list of imaging variables (predictor variables) which are 
important in predicting the cluster membership. 
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Supplementary Results 

A principal component analysis (PCA) was performed to remove any possible 

correlation among imaging features and replace them with a smaller set of uncorrelated 

variables while retaining as much information in the original data set as possible. Scree 

test was performed to retain an optimal number of principal components (n = 8) (Figure 

4-4). Variance factor map giving PCAs contributions to imaging features are shown in 

Figure 4-5. Furthermore, these PCAs can be feed to the cluster analysis to find the 

distinct clusters. 

 
Figure 4-4  A scree plot: Percentage of variance according to the number of principal 
components (dimensions) for determining the optimal number of components (n = 8). 
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Figure 4-5  PCAs contributions to imaging variables on the two first major components. 
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CHAPTER 5: AIRWAY BRANCH VARIATION IN FORMER AND CURRENT SMOKERS 
OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE: A CLUSTER 

ANALYSIS APPROACH   

 

5.1 Introduction 

Chronic obstructive pulmonary disease (COPD) is the third major cause of death (94) 

with a complex collection of conditions (95). COPD patients are heterogeneous in their 

response to treatment and their prognosis. While pulmonary function test (PFT)-based 

FEV1 and FVC are highly recommended to assess the disease stages, it cannot be able to 

address the heterogeneity and possible structural/functional alterations at multiscale 

levels as well as symptoms of the disease.  

The quantitative computed tomography (QCT) with the ability to extract features at 

different multiscale levels can be useful along with PFT to give a broader picture of the 

disease heterogeneity. Further, these imaging features (variables) can be used in data-

driven techniques such as supervised of unsupervised machine learning methods to assess 

the possible phenotypes within the COPD patients. Using a comprehensive set of imaging 

variables derived from QCT, Haghighi et al. (96) and Choi et al. (97) performed cluster 

analyses leading to four distinct homogenous groups for current and also former smoker 

within SPIROMICS (98) cohort. Their cluster analysis showed there are possible 

phenotypic groups within former and current smoker with distinct structural and 

functional imaging variable with strong correlation with clinical and biomarker measures.  

Smith et al. (99) investigated airway variants as a possible risk factor in two COPD 

cohorts: MESA (100) and SPIROMICS. They suggested that as COPD is not uncommon 

among non-smokers and also many smokers do not develop COPD, the airway variants 

can be considered as a risk factor.  
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In this study, we hypothesize the QCT-derived imaging variables can be used to assess a 

possible difference of airway variants between former and current smokers and their 

correlation with distinct clusters. 

5.2 Methods 

5.2.1 Human Subject Data and QCT Imaging among former and current smokers 

Among 2,981 participants enrolled in SPIROMICS, we analyzed a total of 758 

SPIROMICS subjects containing an extensive set of biomarkers. From this 758, there 

were 406 former smokers, 284 current smokers as well as 68 healthy control groups. 

PFTs were performed for all subjects at both pre- and post- bronchodilators. Table 5.1 

shows the demographic and PFT measures based on each stratum for current and former 

smokers (See (98) for details of strata).  

Two QCT scans at total lung capacity (TLC) and residual volume (RV) were 

acquired from SPIROMICS study. Imaging protocols were approved by respective 

institute research boards (IRB). All QCT scans were obtained with post-bronchodilator to 

relax temporal airway luminal change. The images segmented with an automated 

commercial airway/lung segmentation software (Apollo). The image registration was 

performed to math RV and TLC for each subject with a mass-preserving imaging 

registration technique (101, 102). 

5.2.2 QCT-based Imaging Variables for Former and Current Smokers 

A total of 75 multi-scale imaging-based variables including structural and 

functional variables were extracted for each subject. The structural variable were derived 

from CT scans directly. These structural variables included bifurcation angle (θ), airway 
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circularity (Cr), wall thickness (WT) and hydraulic diameter (Dh), where each variable 

indicated alteration of skeletal structure, alteration of airway shape, wall thickening and 

luminal narrowing, respectively. The normalization method was performed on variables 

(denoted by *) to eliminate possible inter-subject variability due to age, gender, and 

height. The extracted imaging variables for 50 subjects is shown in Figure 5.1 indicating 

heterogeneity between subjects of COPD. 

5.2.3 Airway Branch Variant 

Smith et al. (6) gathered the data for three types of airway variant including 

Standard, Accessory sub-superior and Absent right medial-basal among 2630 

SPIROMICS subjects. These airway variants are shown in Figure 5.2. From our 758 

analyzed subjects, we found 275 and 383 common subjects with available airway branch 

information for current and former smokers, respectively. 

5.2.4 Clustering and Statistical Assessment 

For both current and former smokers, we performed principal component analysis 

(PCA) to reduce the size of data set and eliminate the correlated imaging features. Then 

we performed cluster analysis with K-means resulting in four clusters with distinct 

characteristics for former and current smokers.  

Further association tests of imaging-based clusters with demographic and clinical 

variables to assess the clinical relevance of current clusters were performed. R software 

(version 3.1.1) was used to perform statistical analysis. Kruskal-Wallis and chi-square 

tests were performed to compare differences of continuous and categorical variables, 

respectively. P = 0.05 was taken as the significant level in all tests. 
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5.3 Results and Discussion  

Clusters resulted for current and former smokers and means of fSAD% and Emph% 

for each cluster are tabulated in Table 5.2. Kernel density estimation (KDE) plots with 

regression line for both current and former smokers are shown in Figure 5.3. The 

probability distribution of Emph% and fSAD% for former and current smoker (with 

Pearson coefficient 0.66 and 0.58, respectively) is different. Table 5.3 shows the 

associations of two important imaging-based metrics (fSAD% and Emph%) with airway 

branch variants in respective current and former smokers. It is noted that airway variant 

phenotype is associated with fSAD% in current smokers, whereas it is associated with 

Emph% in former smokers. This difference can be caused by effect of masking for 

airway branches between former and current smokers. Figure 5.4 shows the prevalence of 

airway variants among four clusters for former and current smokers. Former smokers 

showed relatively higher Emph% and fSAD% compared to current smokers. This can be 

due to current smoking status association with lower QCT measure than former smoker. 

In this present study, we compared former and current smokers from SPIROMICS to 

assess the variation of airway branches and their associations with imaging-based 

clusters. First, the prevalence of airway variants among clusters were consistent with 

those of the general population reported by Smith et al. (99) with Acc. B* and Abs. RB7 

as the most and the second most common airway variants (Figure 5-4). The prevalence of 

ACC. B* for both current and former smoker had an increasing pattern from cluster 1 to 

cluster 4. Subjects in Cluster 1 had 2 for both current and former had preserved 

pulmonary function (FEV1/FVC > 0.7) suggesting more prevalence of airway variant 

among COPD subjects with severe decline in PFT. The Cluster 4 in both current and 
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former smokers with the highest ACC. B* prevalence among clusters were associated 

with the highest CAT score, the highest exacerbation histories, the lowest 6-minute walk 

distance as well as the highest Emph% (96).  

In summary, central airway branch variation among former and current smokers can 

be used to assess the risk factor for COPD. 
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Table 5-1 The demographic and PFT measures based on each stratum for current and former 
smokers. 

 

 
Stratum 1 
(Healthy) 

Stratum 2 Stratum 3 
Stratum 

4 
P value 

Current smokers  

Demography 

 N = 130 N = 114 N = 131 N = 39  

Age, yrs 
47.8  

(16.9) 
53.7  
(8.1) 

62  
(8.1) 

62.6 
(7.7) 

< 0.0001 

BMI, kg/m2 
27.4  
(5.5) 

28.4  
(5.3) 

26.3  
(4.8) 

23.8 
(4.9) 

< 0.0001 

Gender, 
(Male/Female %) 

41.5/58.5 49.1/50.9 61.8/38.2 69.2/30.8 0.039 

Maximal lung function‡ 

 N = 105 N = 114 N = 131 N = 39  

FEV1 % predicted 
102  
(11) 

99  
(14) 

73  
(16) 

40  
(7) 

< 0.0001 

FVC % predicted 
99  

(10) 
100  
(13) 

96  
(18) 

78  
(17) 

< 0.0001 

FEV1/FVC × 100 
82  
(6) 

78  
(5) 

58  
(8) 

41  
(11) 

< 0.0001 

Former smokers  

Demography 

 N = 69 N = 119 N = 184 N = 103  

Age, yrs 
58.6  

(10.5) 
65.1  
(7.5) 

69.1  
(6.4) 

65.2 
(7.5) 

< 0.0001 

BMI, kg/m2 
28.4  
(5.2) 

29.5  
(4.8) 

28.4  
(4.6) 

27.0 
(4.7) 

< 0.0001 

Gender, 
(Male/Female %) 

42/58 51.3/48.7 62.5/37.5 57.3/42.7 = 0.02 

Maximal lung function‡ 

 N = 69 N = 119 N = 184 N = 103  

FEV1 % predicted 
102  
(12) 

97  
(14) 

76  
(15) 

34  
(10) 

< 0.0001 

FVC % predicted 
98  

(11) 
95  

(13) 
99 

 (15) 
76  

(17) 
< 0.0001 

FEV1/FVC × 100 
81  
(6) 

78  
(5) 

57 
 (8) 

34  
(9) 

< 0.0001 
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Table 5-2  fSAD% and Emph% in four imaging-based clusters compared with heathy control 

subjects. 

Current smokers  

Variable 
Cluster 1 
(N = 96) 

Cluster 2 
(N = 45) 

Cluster 3 
(N = 88 ) 

Cluster 4 
(N = 55) 

P value  
Healthy 
subjects 
(N = 69) 

fSAD% 
(Total) 

4.6 8.4 12.3 34.9 <0.0001 4.4 

Emph% 
(Total) 

2.8 2.4 4.2 13.5 <0.0001 2.8 

Former smokers  

 
Cluster 1 
(N = 100) 

Cluster 2 
(N = 80) 

Cluster 3 
(N = 141) 

Cluster 4 
(N = 85) 

P value  
Healthy 
subjects 
(N = 69) 

fSAD% 
(Total) 

8.7 7.5 23.5 36.8 <0.0001 5 

Emph% 
(Total) 

5.8 2.4 10.4 2.5 <0.0001 2.4 

 

 

Table 5-3  fSAD% and Emph% in the three subgroups of airway branch variants. “Abs. RB7”, 

absence of right medial-basal airway variant; “Acc. B*”, accessory sub-superior airway variant. 

Current smokers   
Variable Abs. RB7 Acc. B* Standard P value 
fSAD% 0.19 0.15 0.12 0.056 
Emph% 0.07 0.06 0.05 0.296 

Former smokers  

fSAD% 0.2 0.21 0.18 0.192 
Emph% 0.13 0.13 0.09 0.001 
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Figure 5-1 Imaging variables for 50 subjects indicating heterogeneity in COPD. 
 

 

 
Figure 5-2 Three types of airway variants in SPIROMICS: standard, absent right medial-basal 
(Abs. RB7) and accessory sub-superior (Acc. B*).  
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(a) Current smokers  

  
(b) Former smokers  

Figure 5-3 Kernel density estimation (KDE) plots with regression line for both current and 
former smokers. 

 

 

 

  

Figure 5-4  Associations of airway branch variants (x-axis at the top) with clusters (y-axis on the 
left) in (a) current smokers, (b) former smokers. The number inside the circle is the % distribution 
of subjects with an airway variant in each cluster, summing to 100 on the rightmost. The numbers 
at the bottom sum the % distributions of subjects with an airway variant over 4 clusters, e.g. 
28/400=7% of current smokers in this analysis had “Abs. RB7”, while only 3.3% of them had 
“Abs. RB7” in cluster 1. 
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CHAPTER 6: FUTURE WORK 

6.1 Imaging-based Variables as A Predictor for Severity of COPD 

The imaging variables extracted from quantitative imaging and image registration 

can be used as input features to build a machine learning model to predict severity of 

disease for a patient in a longitudinal study. A part of data can be used a training data set 

and the other part can be used for validation purpose. Further the predictive model can be 

compare with clinical and biomarker measure giving a comprehensive picture of the 

disease exacerbation and severity over time. Also with several machine learning model, 

an ensemble method can be built to increase the accuracy on validation data set. These 

predictive model can provide useful tools for precision medicine.   

6.2 Using Deep Learning with Convolutional Neural Network for COPD Classification 

A convolutional neural network (CNN) is a class of feed-forward artificial neural 

network for imaging task classification. A CNN model includes an input and output 

layers as well as multiple hidden layers and can extract the features automatically. 

Recently CNN has become a very popular tool for image classification which can 

automatically extract features, learn and classify for different medical tasks (103). Using 

CT images as inputs, a CNN model can be used to predict the COPD subtypes, severity 

or exacerbations. This model uses the images directly as inputs (automatic feature 

extraction) compared the “hand-crafted” features derived from image registration in this 

study.  



www.manaraa.com

 
 

97 
 

 

 

 

 

 

 

 

 

 

 
Figure 6-1 Regular vs convolutional neural network. 
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